1. |
Xia D, Tang WK, Ye Y. Structure and function of the AAA+ ATPase p97/Cdc48p. Gene, 2016, 583(1): 64-77.
|
2. |
Mengel D, Librizzi D, Schoser B, et al. Inclusion body myopathy, paget’s disease, and fronto-temporal dementia: a VCP-related multi-systemic proteinopathy. Fortschr Neurol Psychiatr, 2018, 86(7): 434-438.
|
3. |
Banerjee S, Bartesaghi A, Merk A, et al. 2. 3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science, 2016, 351(6275): 871-875.
|
4. |
Meyer H, Bug M, Bremer S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol, 2012, 14(2): 117-123.
|
5. |
Fessart D, Marza E, Taouji S, et al. P97/CDC-48: proteostasis control in tumor cell biology. Cancer Lett, 2013, 337(1): 26-34.
|
6. |
Haines DS. p97-containing complexes in proliferation control and cancer: emerging culprits or guilt by association?. Genes Cancer, 2010, 1(7): 753-763.
|
7. |
Arumughan A, Roske Y, Barth C, et al. Quantitative interaction mapping reveals an extended UBX domain in ASPL that disrupts functional p97 hexamers. Nat Commun, 2016, 7: 13047.
|
8. |
Le LT, Kang W, Kim JY, et al. Structural details of Ufd1 binding to p97 and their functional implications in ER-associated degradation. PLoS One, 2016, 11(9): e0163394.
|
9. |
Bodnar NO, Kim KH, Ji Z, et al. Structure of the Cdc48 ATPase with its ubiquitin-binding cofactor Ufd1-Npl4. Nat Struct Mol Biol, 2018, 25(7): 616-622.
|
10. |
Jain BP. An overview of unfolded protein response signaling and its role in cancer. Cancer Biother Radiopharm, 2017, 32(8): 275-281.
|
11. |
Meusser B, Hirsch C, Jarosch E, et al. ERAD: the long road to destruction. Nat Cell Biol, 2005, 7(8): 766-772.
|
12. |
Taylor EB, Rutter J. Mitochondrial quality control by the ubiquitin-proteasome system. Biochem Soc Trans, 2011, 39(5): 1509-1513.
|
13. |
Karbowski M, Youle RJ. Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation. Curr Opin Cell Biol, 2011, 23(4): 476-482.
|
14. |
Papadopoulos C, Kirchner P, Bug M, et al. VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J, 2017, 36(2): 135-150.
|
15. |
Tresse E, Salomons FA, Vesa J, et al. VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy, 2010, 6(2): 217-227.
|
16. |
Ramadan K, Halder S, Wiseman K, et al. Strategic role of the ubiquitin-dependent segregase p97 (VCP or Cdc48) in DNA replication. Chromosoma, 2017, 126(1): 17-32.
|
17. |
van den Boom J, Wolf M, Weimann L, et al. VCP/p97 extracts sterically trapped Ku70/80 rings from DNA in double-strand break repair. Mol Cell, 2016, 64(1): 189-198.
|
18. |
Maric M, Mukherjee P, Tatham MH, et al. Ufd1-Npl4 recruit Cdc48 for disassembly of ubiquitylated CMG helicase at the end of chromosome replication. Cell Rep, 2017, 18(13): 3033-3042.
|
19. |
Yamamoto S, Tomita Y, Uruno T, et al. Increased expression of valosin-containing protein (p97) is correlated with disease recurrence in follicular thyroid cancer. Ann Surg Oncol, 2005, 12(11): 925-934.
|
20. |
Meyer MF, Seuthe IM, Drebber U, et al. Valosin-containing protein (VCP/p97)-expression correlates with prognosis of HPV- negative oropharyngeal squamous cell carcinoma (OSCC). PLoS One, 2014, 9(12): e114170.
|
21. |
Yamamoto S, Tomita Y, Hoshida Y, et al. Expression level of valosin-containing protein (p97) is associated with prognosis of esophageal carcinoma. Clin Cancer Res, 2004, 11(7): 5558-5565.
|
22. |
Duscharla D, Reddy Kami Reddy K, Dasari C, et al. Interleukin-6 induced overexpression of valosin-containing protein (VCP)/p97 is associated with androgen-independent prostate cancer (AIPC) progression. J Cell Physiol, 2018, 233(10): 7148-7164.
|
23. |
Valle CW, Min T, Bodas M, et al. Critical role of VCP/p97 in the pathogenesis and progression of non-small cell lung carcinoma. PLoS One, 2011, 6(12): e29073.
|
24. |
Liu Y, Hei Y, Shu Q, et al. VCP/p97, down-regulated by microRNA-129-5p, could regulate the progression of hepatocellular carcinoma. PLoS One, 2012, 7(4): e35800.
|
25. |
Jones S, Zhang X, Parsons DW, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 2008, 321(5897): 1801-1806.
|
26. |
Le Moigne R, Aftab BT, Djakovic S, et al. The p97 inhibitor CB-5083 is a unique disrupter of protein homeostasis in models of multiple myeloma. Mol Cancer Ther, 2017, 16(11): 2375-2386.
|
27. |
Bastola P, Wang F, Schaich MA, et al. Specific mutations in the D1-D2 linker region of VCP/p97 enhance ATPase activity and confer resistance to VCP inhibitors. Cell Death Discov, 2017, 3: 17065.
|
28. |
Vekaria PH, Kumar A, Subramaniam D, et al. Functional cooperativity of p97 and histone deacetylase 6 in mediating DNA repair in mantle cell lymphoma cells. Leukemia, 2019, 33(7): 1675-1686.
|
29. |
Bao D, Cheng C, Lan X, et al. Regulation of p53wt glioma cell proliferation by androgen receptor-mediated inhibition of small VCP/p97-interacting protein expression. Oncotarget, 2017, 8(14): 23142-23154.
|
30. |
Tegowski M, Baldwin A. Noncanonical NF-κB in cancer. Biomedicines, 2018, 6(2): 66.
|
31. |
Li JM, Wu H, Zhang W, et al. The p97-UFD1L-NPL4 protein complex mediates cytokine-induced IκBα proteolysis. Mol Cell Biol, 2014, 34(3): 335-347.
|
32. |
Zhang Z, Wang Y, Li C, et al. The transitional endoplasmic reticulum ATPase p97 regulates the alternative nuclear factor NF-κB signaling via partial degradation of the NF-κB subunit p100. J Biol Chem, 2015, 290(32): 19558-19568.
|
33. |
Alexandru G, Graumann J, Smith GT, et al. UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover. Cell, 2008, 134(5): 804-816.
|
34. |
Bandau S, Knebel A, Gage ZO, et al. UBXN7 docks on neddylated cullin complexes using its UIM motif and causes HIF1α accumulation. BMC Biol, 2012, 10: 36.
|
35. |
Vandermoere F, El Yazidi-Belkoura I, Slomianny C, et al. The valosin-containing protein (VCP) is a target of Akt signaling required for cell survival. J Biol Chem, 2006, 281(20): 14307-14313.
|
36. |
Flack JE, Mieszczanek J, Novcic N, et al. Wnt-dependent inactivation of the groucho/TLE co-repressor by the HECT E3 ubiquitin ligase Hyd/UBR5. Mol Cell, 2017, 67(2): 181-193.e5.
|
37. |
Fu X, Ng C, Feng D, et al. Cdc48p is required for the cell cycle commitment point at start via degradation of the G1-CDK inhibitor Far1p. J Cell Biol, 2003, 163(1): 21-26.
|
38. |
Parisi E, Yahya G, Flores A, et al. Cdc48/p97 segregase is modulated by cyclin-dependent kinase to determine cyclin fate during G1 progression. EMBO J, 2018, 37(16): e98724.
|
39. |
Bastola P, Neums L, Schoenen FJ, et al. VCP inhibitors induce endoplasmic reticulum stress, cause cell cycle arrest, trigger caspase-mediated cell death and synergistically kill ovarian cancer cells in combination with salubrinal. Mol Oncol, 2016, 10(10): 1559-1574.
|
40. |
Gugliotta G, Sudo M, Cao Q, et al. Valosin-containing protein/p97 as a novel therapeutic target in acute lymphoblastic leukemia. Neoplasia, 2017, 19(10): 750-761.
|
41. |
Zhao Z, Wu M, Zhang X, et al. CB-5083, an inhibitor of p97, suppresses osteosarcoma growth and stem cell properties by altering protein homeostasis. Am J Transl Res, 2020, 12(6): 2956-2967.
|
42. |
Chou TF, Li K, Frankowski KJ, et al. Structure-activity relationship study reveals ML240 and ML241 as potent and selective inhibitors of p97 ATPase. ChemMedChem, 2013, 8(2): 297-312.
|
43. |
Magnaghi P, D’Alessio R, Valsasina B, et al. Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nat Chem Biol, 2013, 9(9): 548-556.
|
44. |
Zhang J, Hu Y, Hau R, et al. Identification of NMS-873, an allosteric and specific p97 inhibitor, as a broad antiviral against both influenza A and B viruses. Eur J Pharm Sci, 2019, 133: 86-94.
|
45. |
Skrott Z, Mistrik M, Andersen KK, et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature, 2017, 552(7684): 194-199.
|