1. |
Smith TJ, Hegedüs L. Graves’ disease. N Engl J Med, 2016, 375(16): 1552-1565.
|
2. |
Hai YP, Lee ACH, Frommer L, et al. Immunohistochemical analysis of human orbital tissue in Graves’ orbitopathy. J Endocrinol Invest, 2020, 43(2): 123-137.
|
3. |
Bahn RS. Graves’ ophthalmopathy. N Engl J Med, 2010, 362(8): 726-738.
|
4. |
李凯军, 何剑峰. 甲状腺相关眼病的治疗进展. 眼科学报, 2019, 34(1): 52-56.
|
5. |
马超, 刘薇, 李凯军, 等. 甲状腺相关眼病免疫相关发病机制的研究现状与进展. 眼科新进展, 2019, 39(8): 790-794.
|
6. |
Huang Y, Fang S, Li D, et al. The involvement of T cell pathogenesis in thyroid-associated ophthalmopathy. Eye (Lond), 2019, 33(2): 176-182.
|
7. |
Khong JJ, McNab AA, Ebeling PR, et al. Pathogenesis of thyroid eye disease: review and update on molecular mechanisms. Br J Ophthalmol, 2016, 100(1): 142-150.
|
8. |
Fang S, Huang Y, Wang S, et al. IL-17A exacerbates fbrosis by promoting the proinfammatory and profibrotic function of orbital fibroblasts in TAO. J Clin Endocrinol Metab, 2016, 101(8): 2955-2965.
|
9. |
陆燕, 张鹏, 魏锐利. CD40-CD40配体共刺激通路在甲状腺相关性眼病发病中作用研究进展. 眼科新进展, 2011, 31(7): 695-697.
|
10. |
Salvi M, Covelli D. B cells in Graves’ Orbitopathy: more than just a source of antibodies?. Eye (Lond), 2019, 33(2): 230-234.
|
11. |
Douglas RS. Teprotumumab, an insulin-like growth factor-1 receptor antagonist antibody, in the treatment of active thyroid eye disease: a focus on proptosis. Eye (Lond), 2019, 33(2): 183-190.
|
12. |
Piantanida E, Bartalena L. Teprotumumab: a new avenue for the management of moderate-to-severe and active Graves’ orbitopathy?. J Endocrinol Invest, 2017, 40(8): 885-887.
|
13. |
Smith TJ, Kahaly GJ, Ezra DG, et al. Teprotumumab for thyroid-associated ophthalmopathy. N Engl J Med, 2017, 376(18): 1748-1761.
|
14. |
Douglas RS, Kahaly GJ, Patel A, et al. Teprotumumab for the treatment of active thyroid eye disease. N Engl J Med, 2020, 382(4): 341-352.
|
15. |
Markham A. Teprotumumab: first approval. Drugs, 2020, 80(5): 509-512.
|
16. |
Smith TJ. Teprotumumab in thyroid-associated ophthalmopathy: rationale for therapeutic insulin-like growth factor-i receptor inhibition. J Neuroophthalmol, 2020, 40(1): 74-83.
|
17. |
Stan MN, Salvi M. Management of endocrine disease: rituximab therapy for Graves’ orbitopathy-lessons from randomized control trials. Eur J Endocrinol, 2017, 176(2): R101-R109.
|
18. |
Strianese D, Rossi F. Interruption of autoimmunity for thyroid eye disease: B-cell and T-cell strategy. Eye (Lond), 2019, 33(2): 191-199.
|
19. |
Salvi M, Vannucchi G, Currò N, et al. Efficacy of B-cell targeted therapy with rituximab in patients with active moderate to severe Graves’ orbitopathy: a randomized controlled study. J Clin Endocrinol Metab, 2015, 100(2): 422-431.
|
20. |
Stan MN, Garrity JA, Carranza Leon BG, et al. Randomized controlled trial of rituximab in patients with Graves’ orbitopathy. J Clin Endocrinol Metab, 2015, 100(2): 432-441.
|
21. |
Wiersinga WM. Advances in treatment of active, moderate-to-severe Graves’ ophthalmopathy. Lancet Diabetes Endocrinol, 2017, 5(2): 134-142.
|
22. |
Genere N, Stan MN. Current and emerging treatment strategies for Graves’ orbitopathy. Drugs, 2019, 79(2): 109-124.
|
23. |
Bartalena L, Baldeschi L, Boboridis K, et al. The 2016 European Thyroid Association/European Group on Graves’ Orbitopathy Guidelines for the Management of Graves’ Orbitopathy. Eur Thyroid J, 2016, 5(1): 9-26.
|
24. |
Li J, Xiao Z, Hu X, et al. The efficacy of rituximab combined with 131I for ophthalmic outcomes of Graves’ ophthalmopathy patients. Pharmacology, 2017, 99(3-4): 144-152.
|
25. |
Shen WC, Lee CH, Loh EW, et al. Efficacy and safety of rituximab for the treatment of Graves’ orbitopathy: a meta-analysis of randomized controlled trials. Pharmacotherapy, 2018, 38(5): 503-510.
|
26. |
Hamed Azzam S, Kang S, Salvi M, et al. Tocilizumab for thyroid eye disease. Cochrane Database Syst Rev, 2018, 11(11): CD012984.
|
27. |
Reiner SL. Development in motion: helper T cells at work. Cell, 2007, 129(1): 33-36.
|
28. |
Pérez-Moreiras JV, Alvarez-López A, Gómez EC. Treatment of active corticosteroid-resistant Graves’ orbitopathy. Ophthalmic Plast Reconstr Surg, 2014, 30(2): 162-167.
|
29. |
Sy A, Eliasieh K, Silkiss RZ. Clinical response to tocilizumab in severe thyroid eye disease. Ophthalmic Plast Reconstr Surg, 2017, 33(3): e55-e57.
|
30. |
Canas CA, Bonilla-Abadia F, Vallejo K, et al. Successful treatment for severe thyroid-associated ophthalmopathy with tocilizumab. Endocr Metab Immune Disord Drug Targets, 2018, 18(6): 665-667.
|
31. |
Perez-Moreiras JV, Gomez-Reino JJ, Maneiro JR, et al. Efficacy of tocilizumab in patients with moderate-to-severe corticosteroid-resistant Graves orbitopathy: a randomized clinical trial. Am J Ophthalmol, 2018, 195: 181-190.
|
32. |
Leszczynska A, Molins B, Fernández E, et al. Cytokine production in thyroid eye disease: in vitro effects of dexamethasone and IL-6 blockade with tocilizumab. Graefes Arch Clin Exp Ophthalmol, 2019, 257(10): 2307-2314.
|
33. |
Tang F, Chen X, Mao Y, et al. Orbital fibroblasts of Graves’ orbitopathy stimulated with proinflammatory cytokines promote B cell survival by secreting BAFF. Mol Cell Endocrinol, 2017(446): 1-11.
|
34. |
Paridaens D, van den Bosch WA, van der Loos TL, et al. The effect of etanercept on Graves’ ophthalmopathy: a pilot study. Eye (Lond), 2005, 19(12): 1286-1289.
|
35. |
Ayabe R, Rootman DB, Hwang CJ, et al. Adalimumab as steroid-sparing treatment of inflammatory-stage thyroid eye disease. Ophthalmic Plast Reconstr Surg, 2014, 30(5): 415-419.
|
36. |
Beringer A, Noack M, Miossec P. IL-17 in chronic inflammation: from discovery to targeting. Trends Mol Med, 2016, 22(3): 230-241.
|
37. |
Zheng L, Ye P, Liu C. The role of the IL-23/IL-17 axis in the pathogenesis of Graves’ disease. Endocr J, 2013, 60(5): 591-597.
|
38. |
Rajaii F, McCoy AN, Smith TJ. Cytokines are both villains and potential therapeutic targets in thyroid-associated ophthalmopathy: from bench to bedside. Expert Rev Ophthalmol, 2014, 9(3): 227-234.
|
39. |
Turcu AF, Kumar S, Neumann S, et al. A small molecule antagonist inhibits thyrotropin receptor antibody-induced orbital fibroblast functions involved in the pathogenesis of Graves ophthalmopathy. J Clin Endocrinol Metab, 2013, 98(5): 2153-2159.
|
40. |
Sanders P, Young S, Sanders J, et al. Crystal structure of the TSH receptor (TSHR) bound to a blocking-type TSHR autoantibody. J Mol Endocrinol, 2011, 46(2): 81-99.
|
41. |
Kahaly GJ, Stan MN, Frommer L, et al. A novel anti-CD40 monoclonal antibody, iscalimab, for control of Graves hyperthyroidism-a proof-of-concept trial. J Clin Endocrinol Metab, 2020, 105(3): dgz013.
|