1. |
Benham-Pyle BW, Pruitt BL, Nelson WJ. Cell adhesion. Mechanical strain induces E-cadherin-dependent Yap1 and β-catenin activation to drive cell cycle entry. Science, 2015, 348(6238): 1024-1027.
|
2. |
Lee HP, Gu L, Mooney DJ, et al. Mechanical confinement regulates cartilage matrix formation by chondrocytes. Nat Mater, 2017, 16(12): 1243-1251.
|
3. |
Fusco F, Creta M, De Nunzio C, et al. Progressive bladder remodeling due to bladder outlet obstruction: a systematic review of morphological and molecular evidences in humans. BMC Urol, 2018, 18(1): 15.
|
4. |
Hoffman BD, Grashoff C, Schwartz MA. Dynamic molecular processes mediate cellular mechanotransduction. Nature, 2011, 475(7356): 316-323.
|
5. |
Janota CS, Calero-Cuenca FJ, Gomes ER. The role of the cell nucleus in mechanotransduction. Curr Opin Cell Biol, 2020, 63: 204-211.
|
6. |
Theocharis AD, Skandalis SS, Gialeli C, et al. Extracellular matrix structure. Adv Drug Deliv Rev, 2016, 97: 4-27.
|
7. |
Lou J, Stowers R, Nam S, et al. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials, 2018, 154: 213-222.
|
8. |
Papanicolaou M, He P, Rutting S, et al. Extracellular matrix oxidised by the granulocyte oxidants hypochlorous and hypobromous acid reduces lung fibroblast adhesion and proliferation in vitro. Cells, 2021, 10(12): 3351.
|
9. |
Ruddy JM, Akerman AW, Kimbrough D, et al. Differential hypertensive protease expression in the thoracic versus abdominal aorta. J Vasc Surg, 2017, 66(5): 1543-1552.
|
10. |
Chaudhuri O, Gu L, Klumpers D, et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater, 2016, 15(3): 326-334.
|
11. |
Chen Y, Ju L, Rushdi M, et al. Receptor-mediated cell mechanosensing. Mol Biol Cell, 2017, 28(23): 3134-3155.
|
12. |
Kim J, Lee J, Jang J, et al. Topological adaptation of transmembrane domains to the force-modulated lipid bilayer is a basis of sensing mechanical force. Curr Biol, 2020, 30(13): 2649.
|
13. |
Folgering JH, Sharif-Naeini R, Dedman A, et al. Molecular basis of the mammalian pressure-sensitive ion channels: focus on vascular mechanotransduction. Prog Biophys Mol Biol, 2008, 97(2/3): 180-195.
|
14. |
Li H. TRP channel classification. Adv Exp Med Biol, 2017, 976: 1-8.
|
15. |
Feng J, Armillei MK, Yu AS, et al. Ca2+ signaling in cardiac fibroblasts and fibrosis-associated heart diseases. J Cardiovasc Dev Dis, 2019, 6(4): 34.
|
16. |
Nikolaev YA, Cox CD, Ridone P, et al. Mammalian TRP ion channels are insensitive to membrane stretch. J Cell Sci, 2019, 132(23): jcs238360.
|
17. |
Jernigan NL, Drummond HA. Myogenic vasoconstriction in mouse renal interlobar arteries: role of endogenous beta and gammaENaC. Am J Physiol Renal Physiol, 2006, 291(6): F1184-F1191.
|
18. |
Knoepp F, Ashley Z, Barth D, et al. Shear force sensing of epithelial Na+ channel (ENaC) relies on N-glycosylated asparagines in the palm and knuckle domains of αENaC. Proc Natl Acad Sci U S A, 2020, 117(1): 717-726.
|
19. |
Del Mármol J, Rietmeijer RA, Brohawn SG. Studying mechanosensitivity of two-pore domain k+ channels in cellular and reconstituted proteoliposome membranes. Methods Mol Biol, 2018, 1684: 129-150.
|
20. |
Fancher IS, Levitan I. Endothelial inwardly-rectifying K+ channels as a key component of shear stress-induced mechanotransduction. Curr Top Membr, 2020, 85: 59-88.
|
21. |
Campbell ID, Humphries MJ. Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol, 2011, 3(3): a004994.
|
22. |
Fang Y, Wu D, Birukov KG. Mechanosensing and mechanoregulation of endothelial cell functions. Compr Physiol, 2019, 9(2): 873-904.
|
23. |
Gerthoffer WT, Gunst SJ. Invited review: focal adhesion and small heat shock proteins in the regulation of actin remodeling and contractility in smooth muscle. J Appl Physiol (1985), 2001, 91(2): 963-972.
|
24. |
Baker BM, Trappmann B, Wang WY, et al. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat Mater, 2015, 14(12): 1262-1268.
|
25. |
Shyy JY, Chien S. Role of integrins in cellular responses to mechanical stress and adhesion. Curr Opin Cell Biol, 1997, 9(5): 707-713.
|
26. |
Owen LM, Adhikari AS, Patel M, et al. A cytoskeletal clutch mediates cellular force transmission in a soft, three-dimensional extracellular matrix. Mol Biol Cell, 2017, 28(14): 1959-1974.
|
27. |
Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science, 2005, 310(5751): 1139-1143.
|
28. |
Hohmann T, Dehghani F. The cytoskeleton-a complex interacting meshwork. Cells, 2019, 8(4): 362.
|
29. |
Forgacs G. On the possible role of cytoskeletal filamentous networks in intracellular signaling: an approach based on percolation. J Cell Sci, 1995, 108(Pt 6): 2131-2143.
|
30. |
Graham DM, Burridge K. Mechanotransduction and nuclear function. Curr Opin Cell Biol, 2016, 40: 98-105.
|
31. |
Chakraborty S, Banerjee S, Raina M, et al. Force-directed “mechanointeractome” of talin-integrin. Biochemistry, 2019, 58(47): 4677-4695.
|
32. |
Sivaramakrishnan S, Schneider JL, Sitikov A, et al. Shear stress induced reorganization of the keratin intermediate filament network requires phosphorylation by protein kinase C zeta. Mol Biol Cell, 2009, 20(11): 2755-2765.
|
33. |
Joca HC, Coleman AK, Ward CW, et al. Quantitative tests reveal that microtubules tune the healthy heart but underlie arrhythmias in pathology. J Physiol, 2020, 598(7): 1327-1338.
|
34. |
Maurer M, Lammerding J. The driving force: nuclear mechanotransduction in cellular function, fate, and disease. Annu Rev Biomed Eng, 2019, 21: 443-468.
|
35. |
Cho S, Vashisth M, Abbas A, et al. Mechanosensing by the lamina protects against nuclear rupture, DNA damage, and cell-cycle arrest. Dev Cell, 2019, 49(6): 920-935.e5.
|
36. |
Tajik A, Zhang Y, Wei F, et al. Transcription upregulation via force-induced direct stretching of chromatin. Nat Mater, 2016, 15(12): 1287-1296.
|
37. |
Elosegui-Artola A, Andreu I, Beedle AEM, et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell, 2017, 171(6): 1397-1410.e14.
|
38. |
Lohberger B, Kaltenegger H, Weigl L, et al. Mechanical exposure and diacerein treatment modulates integrin-FAK-MAPKs mechanotransduction in human osteoarthritis chondrocytes. Cell Signal, 2019, 56: 23-30.
|
39. |
Boutahar N, Guignandon A, Vico L, et al. Mechanical strain on osteoblasts activates autophosphorylation of focal adhesion kinase and proline-rich tyrosine kinase 2 tyrosine sites involved in ERK activation. J Biol Chem, 2004, 279(29): 30588-30599.
|
40. |
Jeon YM, Kook SH, Son YO, et al. Role of MAPK in mechanical force-induced up-regulation of type Ⅰ collagen and osteopontin in human gingival fibroblasts. Mol Cell Biochem, 2009, 320(1/2): 45-52.
|