1. |
Giampietro PF, Raggio CL, Blank RD, et al. Clinical, genetic and environmental factors associated with congenital vertebral malformations. Mol Syndromol, 2013, 4(1/2): 94-105.
|
2. |
Wynne-Davies R. Congenital vertebral anomalies: aetiology and relationship to spina bifida cystica. J Med Genet, 1975, 12(3): 280-288.
|
3. |
Cho W, Shepard N, Arlet V. The etiology of congenital scoliosis: genetic vs. environmental-a report of three monozygotic twin cases. Eur Spine J, 2018, 27(Suppl 3): 533-537.
|
4. |
McMaster MJ, Ohtsuka K. The natural history of congenital scoliosis. A study of two hundred and fifty-one patients. J Bone Joint Surg Am, 1982, 64(8): 1128-1147.
|
5. |
Hedequist D, Emans J. Congenital scoliosis. J Am Acad Orthop Surg, 2004, 12(4): 266-275.
|
6. |
Kawakami N, Tsuji T, Imagama S, et al. Classification of congenital scoliosis and kyphosis: a new approach to the three-dimensional classification for progressive vertebral anomalies requiring operative treatment. Spine (Phila Pa 1976), 2009, 34(17): 1756-1765.
|
7. |
Kesling KL, Lonstein JE, Denis F, et al. The crankshaft phenomenon after posterior spinal arthrodesis for congenital scoliosis: a review of 54 patients. Spine (Phila Pa 1976), 2003, 28(3): 267-271.
|
8. |
Murphy RF, Mooney JF 3rd. The crankshaft phenomenon. J Am Acad Orthop Surg, 2017, 25(9): e185-e193.
|
9. |
Terek RM, Wehner J, Lubicky JP. Crankshaft phenomenon in congenital scoliosis: a preliminary report. J Pediatr Orthop, 1991, 11(4): 527-532.
|
10. |
Goldberg CJ, Moore DP, Fogarty EE, et al. Long-term results from in situ fusion for congenital vertebral deformity. Spine (Phila Pa 1976), 2002, 27(6): 619-628.
|
11. |
Roaf R. The treatment of progressive scoliosis by unilateral growth-arrest. J Bone Joint Surg Br, 1963, 45(4): 637-651.
|
12. |
Winter RB. Convex anterior and posterior hemiarthrodesis and hemiepiphyseodesis in young children with progressive congenital scoliosis. J Pediatr Orthop, 1981, 1(4): 361-366.
|
13. |
Tikoo A, Kothari MK, Shah K, et al. Current concepts - congenital scoliosis. Open Orthop J, 2017, 11: 337-345.
|
14. |
Burnei G, Gavriliu S, Vlad C, et al. Congenital scoliosis: an up-to-date. J Med Life, 2015, 8(3): 388-397.
|
15. |
李叶天, 徐磊磊, 夏超, 等. 凸侧骨骺阻滞术对阻止半椎体所致脊柱侧凸的进展疗效分析. 中国骨伤, 2020, 33(2): 116-120.
|
16. |
Rizkallah M, Sebaaly A, Kharrat K, et al. Is there still a place for convex hemiepiphysiodesis in congenital scoliosis in young children? A long-term follow-up. Global Spine J, 2020, 10(4): 406-411.
|
17. |
Yaszay B, O’Brien M, Shufflebarger HL, et al. Efficacy of hemivertebra resection for congenital scoliosis: a multicenter retrospective comparison of three surgical techniques. Spine (Phila Pa 1976), 2011, 36(24): 2052-2060.
|
18. |
Leatherman KD, Dickson RA. Two-stage corrective surgery for congenital deformities of the spine. J Bone Joint Surg Br, 1979, 61(3): 324-328.
|
19. |
Bradford DS, Boachie-Adjei O. One-stage anterior and posterior hemivertebral resection and arthrodesis for congenital scoliosis. J Bone Joint Surg Am, 1990, 72(4): 536-540.
|
20. |
Mladenov K, Kunkel P, Stuecker R. Hemivertebra resection in children, results after single posterior approach and after combined anterior and posterior approach: a comparative study. Eur Spine J, 2012, 21(3): 506-513.
|
21. |
Chang DG, Kim JH, Ha KY, et al. Posterior hemivertebra resection and short segment fusion with pedicle screw fixation for congenital scoliosis in children younger than 10 years: greater than 7-year follow-up. Spine (Phila Pa 1976), 2015, 40(8): E484-E491.
|
22. |
Wang Y, Liu Z, Du C, et al. The radiological outcomes of one-stage posterior-only hemivertebra resection and short segmental fusion for lumbosacral hemivertebra: a minimum of 5 years of follow-up. J Orthop Surg Res, 2019, 14(1): 426.
|
23. |
Li Y, Wang G, Jiang Z, et al. One-stage posterior excision of lumbosacral hemivertebrae: retrospective study of case series and literature review. Medicine (Baltimore), 2017, 96(43): e8393.
|
24. |
Xue X, Zhao S, Miao F, et al. Posterior-only lumbosacral hemivertebrae resection and fusion in paediatric scoliosis with minimum two year follow-up. Int Orthop, 2020, 44(5): 979-986.
|
25. |
Yang JH, Chang DG, Suh SW, et al. Clinical and radiological outcomes of hemivertebra resection for congenital scoliosis in children under age 10 years: more than 5-year follow-up. Medicine (Baltimore), 2020, 99(32): e21720.
|
26. |
Odent T, Ilharreborde B, Miladi L, et al. Fusionless surgery in early-onset scoliosis. Orthop Traumatol Surg Res, 2015, 101(Suppl 6): S281-S288.
|
27. |
Thompson GH, Akbarnia BA, Kostial P, et al. Comparison of single and dual growing rod techniques followed through definitive surgery: a preliminary study. Spine (Phila Pa 1976), 2005, 30(18): 2039-2044.
|
28. |
Akbarnia BA, Emans JB. Complications of growth-sparing surgery in early onset scoliosis. Spine (Phila Pa 1976), 2010, 35(25): 2193-2204.
|
29. |
Liang J, Li S, Xu D, et al. Risk factors for predicting complications associated with growing rod surgery for early-onset scoliosis. Clin Neurol Neurosurg, 2015, 136: 15-19.
|
30. |
Wang S, Zhang J, Qiu G, et al. One-stage posterior osteotomy with short segmental fusion and dual growing rod technique for severe rigid congenital scoliosis: the preliminary clinical outcomes of a hybrid technique. Spine (Phila Pa 1976), 2014, 39(4): E294-E299.
|
31. |
Sun X, Xu L, Chen Z, et al. Hybrid growing rod technique of osteotomy with short fusion and spinal distraction: an alternative solution for long-spanned congenital scoliosis. Spine (Phila Pa 1976), 2019, 44(10): 707-714.
|
32. |
McCarthy RE, Luhmann S, Lenke L, et al. The Shilla growth guidance technique for early-onset spinal deformities at 2-year follow-up: a preliminary report. J Pediatr Orthop, 2014, 34(1): 1-7.
|
33. |
Nazareth A, Skaggs DL, Illingworth KD, et al. Growth guidance constructs with apical fusion and sliding pedicle screws (SHILLA) results in approximately 1/3rd of normal T1-S1 growth. Spine Deform, 2020, 8(3): 531-535.
|
34. |
Cheung KM, Cheung JP, Samartzis D, et al. Magnetically controlled growing rods for severe spinal curvature in young children: a prospective case series. Lancet, 2012, 379(9830): 1967-1974.
|
35. |
Akbarnia BA, Cheung K, Noordeen H, et al. Next generation of growth-sparing techniques: preliminary clinical results of a magnetically controlled growing rod in 14 patients with early-onset scoliosis. Spine (Phila Pa 1976), 2013, 38(8): 665-670.
|
36. |
Dannawi Z, Altaf F, Harshavardhana NS, et al. Early results of a remotely-operated magnetic growth rod in early-onset scoliosis. Bone Joint J, 2013, 95(1): 75-80.
|
37. |
Hickey BA, Towriss C, Baxter G, et al. Early experience of MAGEC magnetic growing rods in the treatment of early onset scoliosis. Eur Spine J, 2014, 23(Suppl 1): S61-S65.
|
38. |
Subramanian T, Ahmad A, Mardare DM, et al. A six-year observational study of 31 children with early-onset scoliosis treated using magnetically controlled growing rods with a minimum follow-up of two years. Bone Joint J, 2018, 100(9): 1187-1200.
|
39. |
Akesen B, Ulusaloğlu AC, Atici T, et al. Magnetically controlled growing rod in 13 patients with early-onset scoliosis and spinal improvement. Acta Orthop Traumatol Turc, 2018, 52(6): 438-441.
|
40. |
Stokes OM, O’Donovan EJ, Samartzis D, et al. Reducing radiation exposure in early-onset scoliosis surgery patients: novel use of ultrasonography to measure lengthening in magnetically-controlled growing rods. Spine J, 2014, 14(10): 2397-2404.
|
41. |
Campbell RM Jr, Smith MD, Mayes TC, et al. The effect of opening wedge thoracostomy on thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am, 2004, 86(8): 1659-1674.
|
42. |
Berger-Groch J, Weiser L, Kunkel POS, et al. Vertical expandable rib-based distraction device for correction of congenital scoliosis in children of 3 years of age or younger: a preliminary report. J Pediatr Orthop, 2020, 40(8): e728-e733.
|
43. |
Murphy RF, Moisan A, Kelly DM, et al. Use of vertical expandable prosthetic titanium rib (VEPTR) in the treatment of congenital scoliosis without fused ribs. J Pediatr Orthop, 2016, 36(4): 329-335.
|
44. |
Waldhausen JH, Redding G, White K, et al. Complications in using the vertical expandable prosthetic titanium rib (VEPTR) in children. J Pediatr Surg, 2016, 51(11): 1747-1750.
|
45. |
Hensinger RN. Congenital scoliosis: etiology and associations. Spine (Phila Pa 1976), 2009, 34(17): 1745-1750.
|
46. |
Mohanty SP, Pai Kanhangad M, Narayana Kurup JK, et al. Vertebral, intraspinal and other organ anomalies in congenital scoliosis. Eur Spine J, 2020, 29(10): 2449-2456.
|
47. |
Marks DS, Qaimkhani SA. The natural history of congenital scoliosis and kyphosis. Spine (Phila Pa 1976), 2009, 34(17): 1751-1755.
|