1. |
Havaei M, Davy A, Warde-Farley D, et al. Brain tumor segmentation with deep neural networks. Med Image Anal, 2017, 35: 18-31.
|
2. |
Pereira S, Pinto A, Alves V, et al. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging, 2016, 35(5): 1240-1251.
|
3. |
Menze BH, Jakab A, Bauer S, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging, 2015, 34(10): 1993-2024.
|
4. |
Christ PF, Elshaer MA, Ettlinger F, et al. Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields//International Conference on Medical Image Computing and Computer-Assisted Intervention--MICCAI 2016. Cham: Springer, 2016: 415-423.
|
5. |
Roth HR, Lu L, Farag A, et al. DeepOrgan: multilevel deep convolutional networks for automated pancreas segmentation//International Conference on Medical Image Computing and Computer-Assisted Intervention--MICCAI 2015. Cham: Springer, 2015: 556-564.
|
6. |
Yu L, Yang X, Chen H, et al. Volumetric convNets with mixed residual connections for automated prostate segmentation from 3D MR images//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco: AAAI Press, 2017: 66-72.
|
7. |
Zhou X, Takayama R, Wang S, et al. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Med Phys, 2017, 44(10): 5221-5233.
|
8. |
Adams M, Chen W, Holcdorf D, et al. Computer vs human: deep learning versus perceptual training for the detection of neck of femur fractures. J Med Imaging Radiat Oncol, 2019, 63(1): 27-32.
|
9. |
许华权, 庄杰, 章建军, 等. 医学影像学在骨科医学中的应用. 中医药管理杂志, 2016, 24(11): 149-151.
|
10. |
Muehlematter UJ, Mannil M, Becker AS, et al. Vertebral body insufficiency fractures: detection of vertebrae at risk on standard CT images using texture analysis and machine learning. Eur Radiol, 2019, 29(5): 2207-2217.
|
11. |
Li YC, Chen HH, Horng-Shing Lu H, et al. Can a deep-learning model for the automated detection of vertebral fractures approach the performance level of human subspecialists?. Clin Orthop Relat Res, 2021, 479(7): 1598-1612.
|
12. |
余锦娟, 林勇. 基于机器学习的骨质疏松性骨折预测研究. 中国医学物理学杂志, 2018, 35(11): 1329-1333.
|
13. |
Burns JE, Yao J, Summers RM. Vertebral body compression fractures and bone density: automated detection and classification on CT images. Radiology, 2017, 284(3): 788-797.
|
14. |
Lessmann N, van Ginneken B, de Jong PA, et al. Iterative fully convolutional neural networks for automatic vertebra segmentation and identification. Med Image Anal, 2019, 53: 142-155.
|
15. |
Kepler CK, Vaccaro AR, Koerner JD, et al. Reliability analysis of the AOSpine thoracolumbar spine injury classification system by a worldwide group of naïve spinal surgeons. Eur Spine J, 2016, 25(4): 1082-1086.
|
16. |
Suri A, Jones BC, Ng G, et al. A deep learning system for automated, multi-modality 2D segmentation of vertebral bodies and intervertebral discs. Bone, 2021, 149: 115972.
|
17. |
Seo JW, Lim SH, Jeong JG, et al. A deep learning algorithm for automated measurement of vertebral body compression from X-ray images. Sci Rep, 2021, 11(1): 13732.
|
18. |
Li Y, Zhang Y, Zhang EL, et al. Differential diagnosis of benign and malignant vertebral fracture on CT using deep learning. Eur Radiol, 2021(2021): 1-8.
|
19. |
Rehman F, Ali SI, Riaz MN, et al. A region-based deep level set formulation for vertebral bone segmentation of osteoporotic fractures. J Digit Imaging, 2020, 33(1): 191-203.
|