1. |
揣征然, 张云辉, 赵雅琳, 等. 全球及中国 AIDS 最新疫情概况. 传染病信息, 2020, 33(6): 501-503.
|
2. |
Bao Y, Larney S, Peacock A, et al. Prevalence of HIV, HCV and HBV infection and sociodemographic characteristics of people who inject drugs in China: a systematic review and meta-analysis. Int J Drug Policy, 2019, 70: 87-93.
|
3. |
Robb ML, Eller LA, Kibuuka H, et al. Prospective study of acute HIV-1 infection in adults in East Africa and Thailand. N Engl J Med, 2016, 374(22): 2120-2130.
|
4. |
Miller WC, Rosenberg NE, Rutstein SE, et al. Role of acute and early HIV infection in the sexual transmission of HIV. Curr Opin HIV AIDS, 2010, 5(4): 277-282.
|
5. |
Gray ER, Bain R, Varsaneux O, et al. p24 revisited: a landscape review of antigen detection for early HIV diagnosis. AIDS, 2018, 32(15): 2089-2102.
|
6. |
曾德军, 张利沙, 马建英, 等. HIV 早期感染实验室检测分析. 预防医学情报杂志, 2020, 36(1): 99-102.
|
7. |
Gudmundsdotter L, Bernasconi D, Hejdeman B, et al. Cross-clade immune responses to Gag p24 in patients infected with different HIV-1 subtypes and correlation with HLA class Ⅰ and Ⅱ alleles. Vaccine, 2008, 26(40): 5182-5187.
|
8. |
Zhu S, Li D, An J, et al. Using Elecsys® HIV Combi PT assay to identify acute and early HIV infection in a teaching hospital of southwest China. Int J STD AIDS, 2016, 27(3): 213-218.
|
9. |
马丽琴, 李康, 盖敬云, 等. 1 例母婴传播 HIV 感染儿童的抗病毒治疗与 HIV 抗体应答. 中国艾滋病性病, 2021, 27(5): 543-544.
|
10. |
邵一鸣. 艾滋病疫苗的科学挑战和应对策略. 科学通报, 2017, 62(17): 1815-1822.
|
11. |
中国疾病预防控制中心. 中国艾滋病检测技术规范(2020 年修订版). (2020-05-18)[2021-08-02]. https://ncaids.chinacdc.cn/zxzx/zxdteff/202005/W020200522484711502629.pdf.
|
12. |
Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Materialia, 2000, 48(1): 1-29.
|
13. |
Dong HH, Liu JL, Zhu H, et al. Two types of nanoparticle-based bio-barcode amplification assays to detect HIV-1 p24 antigen. Virol J, 2012, 9: 180.
|
14. |
Kosaka PM, Pini V, Calleja M, et al. Ultrasensitive detection of HIV-1 p24 antigen by a hybrid nanomechanical-optoplasmonic platform with potential for detecting HIV-1 at first week after infection. PLoS One, 2017, 12(2): e0171899.
|
15. |
Haleyur Giri Setty MK, Kurdekar A, Mahtani P, et al. Cross-subtype detection of HIV-1 capsid p24 antigen using a sensitive europium nanoparticle assay. AIDS Res Hum Retroviruses, 2019, 35(4): 396-401.
|
16. |
Zhan L, Granade T, Liu Y, et al. Development and optimization of thermal contrast amplification lateral flow immunoassays for ultrasensitive HIV p24 protein detection. Microsyst Nanoeng, 2020, 6(1): 54.
|
17. |
Zhao WW, Han YM, Zhu YC, et al. DNA labeling generates a unique amplification probe for sensitive photoelectrochemical immunoassay of HIV-1 p24 antigen. Anal Chem, 2015, 87(11): 5496-5499.
|
18. |
Ma Y, Shen XL, Zeng Q, et al. A multi-walled carbon nanotubes based molecularly imprinted polymers electrochemical sensor for the sensitive determination of HIV-p24. Talanta, 2017, 164: 121-127.
|
19. |
Lin S, Hedde PN, Venugopalan V, et al. Multi-scale silica structures for improved HIV-1 Capsid (p24) antigen detection. Analyst, 2016, 141(13): 4181-4188.
|
20. |
Macchia E, Sarcina L, Picca RA, et al. Ultra-low HIV-1 p24 detection limits with a bioelectronic sensor. Anal Bioanal Chem, 2020, 412(4): 811-818.
|
21. |
Ruiz-Sanchez AJ, Parolo C, Miller BS, et al. Tuneable plasmonic gold dendrimer nanochains for sensitive disease detection. J Mater Chem B, 2017, 5(35): 7262-7266.
|
22. |
张利沙, 曾德军. 铁蛋白笼形纳米颗粒应用于 HIV-1 P24 抗原高灵敏检测的研究. 国际检验医学杂志, 2019, 40(21): 2572-2575.
|
23. |
Li Z, Liu Y, Chen X, et al. Surface-modified mesoporous nanofibers for microfluidic immunosensor with an ultra-sensitivity and high signal-to-noise ratio. Biosens Bioelectron, 2020, 166: 112444.
|
24. |
Zhang Y, Yang H, Yu J, et al. Rapid and sensitive detection of HIV-1 p24 antigen by immunomagnetic separation coupled with catalytic fluorescent immunoassay. Anal Bioanal Chem, 2016, 408(22): 6115-6121.
|
25. |
Bystryak S, Acharya C. Detection of HIV-1 p24 antigen in patients with varying degrees of viremia using an ELISA with a photochemical signal amplification system. Clin Chim Acta, 2016, 456: 128-136.
|
26. |
Du MY, Li NX, Mao GB, et al. Self-assembled fluorescent Ce(Ⅲ) coordination polymer as ratiometric probe for HIV antigen detection. Anal Chim Acta, 2019, 1084: 116-122.
|
27. |
Miller BS, Bezinge L, Gliddon HD, et al. Spin-enhanced nanodiamond biosensing for ultrasensitive diagnostics. Nature, 2020, 587(7835): 588-593.
|
28. |
Cao H, Liu Y, Sun H, et al. Increasing the assembly efficacy of peptidic β-sheets for a highly-sensitive HIV detection. Anal Chem, 2020, 92(16): 11089-11094.
|
29. |
祝蕾, 朱坤福. 纳米材料在现代医学影像上的应用研究. 信息记录材料, 2021, 22(9): 30-31.
|
30. |
杨悦, 王珏玉, 赵敏, 等. 病毒模板合成的金属纳米材料及应用. 化学进展, 2019, 31(7): 1007-1019.
|
31. |
Chen PP, Bai YJ, Tang Y, et al. Rapid and highly sensitive visual detection of oxalate for metabolic assessment of urolithiasis via selective recognition reaction of CdTe quantum dots. J Mater Chem B, 2020, 8(34): 7677-7684.
|
32. |
李英姿, 何丹, 汪德州, 等. 荧光金纳米簇/单壁碳纳米管(AuNCs/SWNTs)复合材料制备及体外细胞毒性研究. 中国实验诊断学, 2017, 21(12): 2180-2184.
|
33. |
李璟, 伍旭, 彭倩, 等. 基于装载白藜芦醇的脂质体包裹介孔碳纳米管用于靶向及近红外激光触发的化疗/光热协同肿瘤治疗. 激光生物学报, 2020, 29(6): 550-560.
|
34. |
Li FY, Zheng Y, Wu J, et al. Smartphone assisted immunodetection of HIV p24 antigen using reusable, centrifugal microchannel array chip. Talanta, 2019, 203: 83-89.
|
35. |
Sailapu SK, Macchia E, Merino-Jimenez I, et al. Standalone operation of an EGOFET for ultra-sensitive detection of HIV. Biosens Bioelectron, 2020, 156: 112103.
|