1. |
Persson CU, Kjellberg S, Lernfelt B, et al. Risk of falling in a stroke unit after acute stroke: The Fall Study of Gothenburg (FallsGOT). Clin Rehabil, 2018, 32(3): 398-409.
|
2. |
Park SJ, Cho KH, Kim SH. The effect of chest expansion exercise with TENS on gait ability and trunk control in chronic stroke patients. J Phys Ther Sci, 2018, 30(5): 697-699.
|
3. |
Van Criekinge T, Truijen S, Schröder J, et al. The effectiveness of trunk training on trunk control, sitting and standing balance and mobility post-stroke: a systematic review and meta-analysis. Clin Rehabil, 2019, 33(6): 992-1002.
|
4. |
Kang N, Lee RD, Lee JH, et al. Functional balance and postural control improvements in patients with stroke after noninvasive brain stimulation: a meta-analysis. Arch Phys Med Rehabil, 2020, 101(1): 141-153.
|
5. |
Matthis JS, Yates JL, Hayhoe MM. Gaze and the control of foot placement when walking in natural terrain. Curr Biol, 2018, 28(8): 1224-1233.e5.
|
6. |
江汉宏, 叶赛青, 高强. 脑卒中后姿势控制机制与训练的研究进展. 中国康复医学杂志, 2021, 36(8): 1020-1025.
|
7. |
Cruz TL, Pérez SM, Chiappe ME. Fast tuning of posture control by visual feedback underlies gaze stabilization in walking Drosophila. Curr Biol, 2021, 31(20): 4596-4607.e5.
|
8. |
尹群辉, 张皓. 脑卒中偏瘫患者预期性姿势调节的研究进展. 中国康复理论与实践, 2017, 23(11): 1250-1253.
|
9. |
Cavallari P, Bolzoni F, Bruttini C, et al. The organization and control of intra-limb anticipatory postural adjustments and their role in movement performance. Front Hum Neurosci, 2016, 10: 525.
|
10. |
陈意, 谢运娟, 高强. 预期性姿势调节的神经调控网络研究进展. 中国康复理论与实践, 2020, 26(5): 568-571.
|
11. |
Piscitelli D, Falaki A, Solnik S, et al. Anticipatory postural adjustments and anticipatory synergy adjustments: preparing to a postural perturbation with predictable and unpredictable direction. Exp Brain Res, 2017, 235(3): 713-730.
|
12. |
Chiou SY, Hurry M, Reed T, et al. Cortical contributions to anticipatory postural adjustments in the trunk. J Physiol, 2018, 596(7): 1295-1306.
|
13. |
Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol, 2006, 16(6): 645-649.
|
14. |
Deane JA, Lim AKP, Phillips ATM, et al. Symptomatic individuals with Lumbar Disc Degeneration use different anticipatory and compensatory kinematic strategies to asymptomatic controls in response to postural perturbation. Gait Posture, 2022, 94: 222-229.
|
15. |
Cheung TCK, Schmuckler MA. Multisensory postural control in adults: variation in visual, haptic, and proprioceptive inputs. Hum Mov Sci, 2021, 79: 102845.
|
16. |
Dideriksen J, Negro F. Feedforward modulation of gamma motor neuron activity can improve motor command accuracy. J Neural Eng, 2021, 18(4): 046068.
|
17. |
Bax AM, Johnson KJ, Watson AM, et al. The effects of perturbation type and direction on threat-related changes in anticipatory postural control. Hum Mov Sci, 2020, 73: 102674.
|
18. |
Blumenfeld H. Neuroanatomy through clinical cases. Sunderland:Sinauer Associates, 2010: 698-734.
|
19. |
Lam CK, Tokuno CD, Staines WR, et al. The direction of the postural response to a vestibular perturbation is mediated by the cerebellar vermis. Exp Brain Res, 2016, 234(12): 3689-3697.
|
20. |
Stoodley CJ, Schmahmann JD. Functional topography of the human cerebellum. Handb Clin Neurol, 2018, 154: 59-70.
|
21. |
Santos MJ, Kanekar N, Aruin AS. The role of anticipatory postural adjustments in compensatory control of posture: 1. Electromyographic analysis. J Electromyogr Kinesiol, 2010, 20(3): 388-397.
|
22. |
Takahata K, Kato M. Neural mechanism underlying autistic savant and acquired savant syndrome. Brain Nerve, 2008, 60(7): 861-869.
|
23. |
Fujimoto H, Mihara M, Hattori N, et al. Cortical changes underlying balance recovery in patients with hemiplegic stroke. Neuroimage, 2014, 85(1): 547-554.
|
24. |
Mihara M, Miyai I, Hattori N, et al. Cortical control of postural balance in patients with hemiplegic stroke. Neuroreport, 2012, 23(5): 314-319.
|
25. |
Kaulmann D, Hermsdörfer J, Johannsen L. Disruption of right posterior parietal cortex by continuous theta burst stimulation alters the control of body balance in quiet stance. Eur J Neurosci, 2017, 45(5): 671-678.
|
26. |
Mierau A, Pester B, Hülsdünker T, et al. Cortical correlates of human balance control. Brain Topogr, 2017, 30(4): 434-446.
|
27. |
高强, 江汉宏, 魏清川, 等. 中枢传导通路与姿势控制技术研究进展与应用推广. 中国科技成果, 2021, 22(10): 58-59.
|
28. |
Shumway-Cook A, Woollacott MH. Motor control: translating research into clinical practice. Philadelphia: Lippincott Williams & Wilkins, 2017: 22-43.
|
29. |
Karthikbabu S, Verheyden G. Relationship between trunk control, core muscle strength and balance confidence in community-dwelling patients with chronic stroke. Top Stroke Rehabil, 2021, 28(2): 88-95.
|
30. |
Jijimol G, Fayaz RK, Vijesh PV. Correlation of trunk impairment with balance in patients with chronic stroke. NeuroRehabilitation, 2013, 32(2): 323-325.
|
31. |
Sorrentino G, Sale P, Solaro C, et al. Clinical measurement tools to assess trunk performance after stroke: a systematic review. Eur J Phys Rehabil Med, 2018, 54(5): 772-784.
|
32. |
Verheyden G, Kersten P. Investigating the internal validity of the Trunk Impairment Scale (TIS) using Rasch analysis: the TIS 2.0. Disabil Rehabil, 2010, 32(25): 2127-2137.
|
33. |
Hernández ED, Galeano CP, Barbosa NE, et al. Intra- and inter-rater reliability of Fugl-Meyer assessment of upper extremity in stroke. J Rehabil Med, 2019, 51(9): 652-659.
|
34. |
Rech KD, Salazar AP, Marchese RR, et al. Fugl-Meyer assessment scores are related with kinematic measures in people with chronic hemiparesis after stroke. J Stroke Cerebrovasc Dis, 2020, 29(1): 104463.
|
35. |
Tsang RC, Chau RM, Cheuk TH, et al. The measurement properties of modified Rivermead mobility index and modified functional ambulation classification as outcome measures for Chinese stroke patients. Physiother Theory Pract, 2014, 30(5): 353-359.
|
36. |
Lascano AM, Lalive PH, Hardmeier M, et al. Clinical evoked potentials in neurology: a review of techniques and indications. J Neurol Neurosurg Psychiatry, 2017, 88(8): 688-696.
|
37. |
Niso G, Tjepkema-Cloostermans MC, Lenders MWPM, et al. Modulation of the somatosensory evoked potential by attention and spinal cord stimulation. Front Neurol, 2021, 12: 694310.
|
38. |
Lee SY, Lim JY, Kang EK, et al. Prediction of good functional recovery after stroke based on combined motor and somatosensory evoked potential findings. J Rehabil Med, 2010, 42(1): 16-20.
|
39. |
张伟东, 寇丽, 王幸丽, 等. 脑干听觉诱发电位、脑电图、MRI 及 MSCT 在诊断重症病毒性脑炎患儿中的应用. 中国 CT 和 MRI 杂志, 2020, 18(5): 75-78.
|
40. |
曹成龙, 宋健, 杜浩, 等. 基于事件相关电位技术的情绪能力障碍研究进展. 中国临床神经外科杂志, 2017, 22(4): 276-278.
|
41. |
Paulus W, Classen J, Cohen LG, et al. State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimul, 2008, 1(3): 151-163.
|
42. |
Li JY, Chen R. Increased intracortical inhibition in hyperglycemic hemichorea-hemiballism. Mov Disord, 2015, 30(2): 198-205.
|
43. |
Keser Z, Buchl SC, Seven NA, et al. Electroencephalogram (EEG) with or without transcranial magnetic stimulation (TMS) as biomarkers for post-stroke recovery: a narrative review. Front Neurol, 2022, 13: 827866.
|
44. |
Quaresima V, Ferrari M. Functional near-infrared spectroscopy (fNIRS) for assessing cerebral cortex function during human behavior in natural/social situations: a concise review. Organ Res Met, 2016, 1: 46-68.
|
45. |
Khan H, Naseer N, Yazidi A, et al. Analysis of human gait using hybrid EEG-fNIRS-based BCI system: a review. Front Hum Neurosci, 2021, 14: 613254.
|
46. |
Amyot F, Kenney K, Spessert E, et al. Assessment of cerebrovascular dysfunction after traumatic brain injury with fMRI and fNIRS. Neuroimage Clin, 2020, 25: 102086.
|
47. |
吴毅. 脑卒中患者的脑功能检测及脑刺激新技术. 中华物理医学与康复杂志, 2019, 41(2): 81-83.
|
48. |
Du J, Yang F, Zhang Z, et al. Early functional MRI activation predicts motor outcome after ischemic stroke: a longitudinal, multimodal study. Brain Imaging Behav, 2018, 12(6): 1804-1813.
|
49. |
Tae WS, Ham BJ, Pyun SB, et al. Current clinical applications of diffusion-tensor imaging in neurological disorders. J Clin Neurol, 2018, 14(2): 129-140.
|
50. |
高鑫洁, 唐朝正, 徐国军, 等. 基于弥散张量纤维束成像探讨皮质脊髓束损伤对脑卒中运动功能障碍的评估价值. 中国康复理论与实践, 2018, 24(12): 1432-1437.
|
51. |
谢运娟, 廖伶艺, 高强. 弥散张量成像在脑卒中患者运动功能预后评估中的研究进展. 中国康复理论与实践, 2019, 25(5): 546-549.
|
52. |
Kim EH, Lee J, Jang SH. Motor outcome prediction using diffusion tensor tractography of the corticospinal tract in large middle cerebral artery territory infarct. NeuroRehabilitation, 2013, 32(3): 583-590.
|
53. |
Gamble K, Chiu A, Peiris C. Core stability exercises in addition to usual care physiotherapy improve stability and balance after stroke: a systematic review and meta-analysis. Arch Phys Med Rehabil, 2021, 102(4): 762-775.
|
54. |
Haruyama K, Kawakami M, Otsuka T. Effect of core stability training on trunk function, standing balance, and mobility in stroke patients. Neurorehabil Neural Repair, 2017, 31(3): 240-249.
|
55. |
Zaback M, Adkin AL, Chua R, et al. Facilitation and habituation of cortical and subcortical control of standing balance following repeated exposure to a height-related postural threat. Neuroscience, 2022, 487: 8-25.
|
56. |
Dijkstra BW, Bekkers EMJ, Gilat M, et al. Functional neuroimaging of human postural control: a systematic review with meta-analysis. Neurosci Biobehav Rev, 2020, 115: 351-362.
|
57. |
Lee NG, You JSH, Yi CH, et al. Best core stabilization for anticipatory postural adjustment and falls in hemiparetic stroke. Arch Phys Med Rehabil, 2018, 99(11): 2168-2174.
|
58. |
Yoon HS, Cha YJ, You JSH. Effects of dynamic core-postural chain stabilization on diaphragm movement, abdominal muscle thickness, and postural control in patients with subacute stroke: a randomized control trial. NeuroRehabilitation, 2020, 46(3): 381-389.
|
59. |
Arntzen EC, Straume BK, Odeh F, et al. Group-based individualized comprehensive core stability intervention improves balance in persons with multiple sclerosis: a randomized controlled trial. Phys Ther, 2019, 99(8): 1027-1038.
|
60. |
Aloraini SM, Glazebrook CM, Pooyania S, et al. An external focus of attention compared to an internal focus of attention improves anticipatory postural adjustments among people post-stroke. Gait Posture, 2020, 82: 100-105.
|
61. |
Kim K, Jung SI, Lee DK. Effects of task-oriented circuit training on balance and gait ability in subacute stroke patients: a randomized controlled trial. J Phys Ther Sci, 2017, 29(6): 989-992.
|
62. |
Chieffo R, Comi G, Leocani L. Noninvasive neuromodulation in poststroke gait disorders: rationale, feasibility, and state of the art. Neurorehabil Neural Repair, 2016, 30(1): 71-82.
|
63. |
Fan H, Song Y, Cen X, et al. The effect of repetitive transcranial magnetic stimulation on lower-limb motor ability in stroke patients: a systematic review. Front Hum Neurosci, 2021, 15: 620573.
|
64. |
Xie YJ, Chen Y, Tan HX, et al. Repetitive transcranial magnetic stimulation for lower extremity motor function in patients with stroke: a systematic review and network meta-analysis. Neural Regen Res, 2021, 16(6): 1168-1176.
|
65. |
Koch G, Bonnì S, Casula EP, et al. Effect of cerebellar stimulation on gait and balance recovery in patients with hemiparetic stroke: a randomized clinical trial. JAMA Neurol, 2019, 76(2): 170-178.
|
66. |
Liao LY, Xie YJ, Chen Y, et al. Cerebellar theta-burst stimulation combined with physiotherapy in subacute and chronic stroke patients: a pilot randomized controlled trial. Neurorehabil Neural Repair, 2021, 35(1): 23-32.
|
67. |
Chen Y, Wei QC, Zhang MZ, et al. Cerebellar intermittent theta-burst stimulation reduces upper limb spasticity after subacute stroke: a randomized controlled trial. Front Neural Circuits, 2021, 15: 655502.
|
68. |
Xie YJ, Wei QC, Chen Y, et al. Cerebellar theta burst stimulation on walking function in stroke patients: a randomized clinical trial. Front Neurosci, 2021, 15: 688569.
|
69. |
Dong K, Meng S, Guo Z, et al. The effects of transcranial direct current stimulation on balance and gait in stroke patients: a systematic review and meta-analysis. Front Neurol, 2021, 12: 650925.
|
70. |
Seo HG, Lee WH, Lee SH, et al. Robotic-assisted gait training combined with transcranial direct current stimulation in chronic stroke patients: a pilot double-blind, randomized controlled trial. Restor Neurol Neurosci, 2017, 35(5): 527-536.
|
71. |
Figlewski K, Blicher JU, Mortensen J, et al. Transcranial direct current stimulation potentiates improvements in functional ability in patients with chronic stroke receiving constraint-induced movement therapy. Stroke, 2017, 48(1): 229-232.
|
72. |
Massetti T, Crocetta TB, Silva TDD, et al. Application and outcomes of therapy combining transcranial direct current stimulation and virtual reality: a systematic review. Disabil Rehabil Assist Technol, 2017, 12(6): 551-559.
|
73. |
Yao X, Cui L, Wang J, et al. Effects of transcranial direct current stimulation with virtual reality on upper limb function in patients with ischemic stroke: a randomized controlled trial. J Neuroeng Rehabil, 2020, 17(1): 73.
|
74. |
Kumru H, Flores A, Rodríguez-Cañón M, et al. Non-invasive brain and spinal cord stimulation for motor and functional recovery after a spinal cord injury. Rev Neurol, 2020, 70(12): 461-477.
|
75. |
Fujimoto H, Mihara M, Hattori N, et al. Neurofeedback-induced facilitation of the supplementary motor area affects postural stability. Neurophotonics, 2017, 4(4): 045003.
|
76. |
Xie Q, Cheng J, Pan G, et al. Treadmill exercise ameliorates focal cerebral ischemia/reperfusion-induced neurological deficit by promoting dendritic modification and synaptic plasticity via upregulating caveolin-1/VEGF signaling pathways. Exp Neurol, 2019, 313: 60-78.
|
77. |
Tavazzi E, Bergsland N, Pirastru A, et al. MRI markers of functional connectivity and tissue microstructure in stroke-related motor rehabilitation: a systematic review. Neuroimage Clin, 2022, 33: 102931.
|
78. |
马富斌. 一附院举办脑卒中神经传导通路与姿势控制康复治疗技术培训班. (2018-08-23)[2022-04-11]. https://www.gxtcmu.edu.cn/Item/23043.aspx.
|
79. |
江汉宏. 华西康复 CPPC 技术培训班在广州成功举办. (2019-06-13)[2022-04-11]. http://www.wchscu.cn/public/department/nephrology/dynamics/31493.html.
|
80. |
四川省医学会. 四川省医学会关于公布 2021 年度四川省医学(青年)科技奖获奖项目的通知. (2022-02-09)[2022-04-11]. http://www.sma.org.cn/main/dispnews.asp?no=252BCBDA-25C3-40D6-9B1F-2E6D8EB8F31D.
|