1. |
Bleich S, Cutler D, Murray C, et al. Why is the developed world obese?. Annu Rev Public Health, 2008, 29: 273-295.
|
2. |
Kannel WB, Cupples LA, Ramaswami R, et al. Regional obesity and risk of cardiovascular disease; the Framingham Study. J Clin Epidemiol, 1991, 44(2): 183-190.
|
3. |
Field AE, Coakley EH, Must A, et al. Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Arch Intern Med, 2001, 161(13): 1581-1586.
|
4. |
Uchida K, Sun W, Yamazaki J, et al. Role of thermo-sensitive transient receptor potential channels in brown adipose tissue. Biol Pharm Bull, 2018, 41(8): 1135-1144.
|
5. |
Xue B, Greenberg AG, Kraemer FB, et al. Mechanism of intracellular calcium ([Ca2+]i) inhibition of lipolysis in human adipocytes. FASEB J, 2001, 15(13): 2527-2529.
|
6. |
Liedtke W, Choe Y, Martí-Renom MA, et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell, 2000, 103(3): 525-535.
|
7. |
Ahern GP. Transient receptor potential channels and energy homeostasis. Trends Endocrinol Metab, 2013, 24(11): 554-560.
|
8. |
Ye L, Kleiner S, Wu J, et al. TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis. Cell, 2012, 151(1): 96-110.
|
9. |
Akopian A. Role of TRP ion channels in physiology and pathology. Semin Immunopathol, 2016, 38(3): 275-276.
|
10. |
Grace MS, Bonvini SJ, Belvisi MG, et al. Modulation of the TRPV4 ion channel as a therapeutic target for disease. Pharmacol Ther, 2017, 177: 9-22.
|
11. |
Thorneloe KS, Sulpizio AC, Lin Z, et al. N-((1S)-1-[4-((2S)-2-[(2, 4-dichlorophenyl)sulfonyl]amino-3-hydroxypropanoyl)-1-piperazinyl]carbonyl-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: Part I. J Pharmacol Exp Ther, 2008, 326(2): 432-442.
|
12. |
Lee HC, Yokomizo T. Applications of mass spectrometry-based targeted and non-targeted lipidomics. Biochem Biophys Res Commun, 2018, 504(3): 576-581.
|
13. |
Steffens DC, Jiang W, Krishnan KR, et al. Metabolomic differences in heart failure patients with and without major depression. J Geriatr Psychiatry Neurol, 2010, 23(2): 138-146.
|
14. |
Sassa T, Suto S, Okayasu Y, et al. A shift in sphingolipid composition from C24 to C16 increases susceptibility to apoptosis in HeLa cells. Biochim Biophys Acta, 2012, 1821(7): 1031-1037.
|
15. |
Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol, 2008, 9(2): 139-150.
|
16. |
Merrill AH Jr. De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J Biol Chem, 2002, 277(29): 25843-25846.
|
17. |
Samad F, Hester KD, Yang G, et al. Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes, 2006, 55(9): 2579-2587.
|
18. |
Palhinha L, Liechocki S, Hottz ED, et al. Leptin induces proadipogenic and proinflammatory signaling in adipocytes. Front Endocrinol (Lausanne), 2019, 10: 841.
|
19. |
Naughton SS, Mathai ML, Hryciw DH, et al. Linoleic acid and the pathogenesis of obesity. Prostaglandins Other Lipid Mediat, 2016, 125: 90-99.
|
20. |
Shao X, Wang M, Wei X, et al. Peroxisome proliferator-activated receptor-γ: master regulator of adipogenesis and obesity. Curr Stem Cell Res Ther, 2016, 11(3): 282-289.
|
21. |
Vidal-Puig AJ, Considine RV, Jimenez-Liñan M, et al. Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J Clin Invest, 1997, 99(10): 2416-2422.
|
22. |
陈永熙, 王伟铭, 周同, 等. PPAR-γ 作用及其相关信号转导途径. 细胞生物学杂志, 2006, 28(3): 382-386.
|