1. |
Mazzeo E, Rubino L, Buglione M, et al. The current management of mycosis fungoides and Sézary syndrome and the role of radiotherapy: principles and indications. Rep Pract Oncol Radiother, 2013, 19(2): 77-91.
|
2. |
Pimpinelli N, Olsen EA, Santucci M, et al. Defining early mycosis fungoides. J Am Acad Dermatol, 2005, 53(6): 1053-1063.
|
3. |
Mehta-Shah N, Horwitz SM, Ansell S, et al. NCCN guidelines insights: primary cutaneous lymphomas, version 2. 2020. J Natl Compr Canc Netw, 2020, 18(5): 522-536.
|
4. |
Willemze R, Hodak E, Zinzani PL, et al. Primary cutaneous lymphomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2018, 29(Suppl 4): iv30-iv40.
|
5. |
Woollard WJ, Pullabhatla V, Lorenc A, et al. Candidate driver genes involved in genome maintenance and DNA repair in Sézary syndrome. Blood, 2016, 127(26): 3387-3397.
|
6. |
Abraham RM, Zhang Q, Odum N, et al. The role of cytokine signaling in the pathogenesis of cutaneous T-cell lymphoma. Cancer Biol Ther, 2011, 12(12): 1019-1022.
|
7. |
Horwitz SM, Koch R, Porcu P, et al. Activity of the PI3K-δ, γ inhibitor duvelisib in a phase 1 trial and preclinical models of T-cell lymphoma. Blood, 2018, 131(8): 888-898.
|
8. |
Krejsgaard T, Vetter-Kauczok CS, Woetmann A, et al. Jak3- and JNK-dependent vascular endothelial growth factor expression in cutaneous T-cell lymphoma. Leukemia, 2006, 20(10): 1759-1766.
|
9. |
Porcu P, Hudgens S, Horwitz S, et al. Quality of life effect of the anti-CCR4 monoclonal antibody mogamulizumab versus vorinostat in patients with cutaneous t-cell lymphoma. Clin Lymphoma Myeloma Leuk, 2021, 21(2): 97-105.
|
10. |
Park J, Yang J, Wenzel AT, et al. Genomic analysis of 220 CTCLs identifies a novel recurrent gain-of-function alteration in RLTPR (p. Q575E). Blood, 2017, 130(12): 1430-1440.
|
11. |
Nie J, Zhang Y, Li X, et al. DNA demethylating agent decitabine broadens the peripheral T cell receptor repertoire. Oncotarget, 2016, 7(25): 37882-37892.
|
12. |
Li X, Zhang Y, Chen M, et al. Increased IFNγ+ T cells are responsible for the clinical responses of low-dose DNA-demethylating agent decitabine antitumor therapy. Clin Cancer Res, 2017, 23(20): 6031-6043.
|
13. |
Mei Q, Chen M, Lu X, et al. An open-label, single-arm, phase I/II study of lower-dose decitabine based therapy in patients with advanced hepatocellular carcinoma. Oncotarget, 2015, 6(18): 16698-16711.
|
14. |
Horn S, Leonardelli S, Sucker A, et al. Tumor CDKN2A-associated JAK2 loss and susceptibility to immunotherapy resistance. J Natl Cancer Inst, 2018, 110(6): 677-681.
|
15. |
Sharma P, Hu-Lieskovan S, Wargo JA, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 2017, 168(4): 707-723.
|
16. |
Isazadeh A, Hajazimian S, Garshasbi H, et al. Resistance mechanisms to immune checkpoints blockade by monoclonal antibody drugs in cancer immunotherapy: focus on myeloma. J Cell Physiol, 2021, 236(2): 791-805.
|
17. |
Ghoneim HE, Fan Y, Moustaki A, et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell, 2017, 170(1): 142-157.
|
18. |
Pauken KE, Sammons MA, Odorizzi PM, et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science, 2016, 354(6316): 1160-1165.
|
19. |
Graiqevci-Uka V, Behluli E, Spahiu L, et al. Targeted treatment and immunotherapy in high-risk and relapsed/ refractory pediatric acute lymphoblastic leukemia. Curr Pediatr Rev, 2023, 19(2): 150-156.
|
20. |
Maio M, Covre A, Fratta E, et al. Molecular pathways: at the crossroads of cancer epigenetics and immunotherapy. Clin Cancer Res, 2015, 21(18): 4040-4047.
|
21. |
Rahmatpanah FB, Carstens S, Guo J, et al. Differential DNA methylation patterns of small B-cell lymphoma subclasses with different clinical behavior. Leukemia, 2006, 20(10): 1855-1862.
|
22. |
Jiang X, Xiao F, Guo F. Oocyte TET3: an epigenetic modifier responsible for maternal inheritance of glucose intolerance. Signal Transduct Target Ther, 2022, 7(1): 357.
|
23. |
Schwartsmann G, Fernandes MS, Schaan MD, et al. Decitabine (5-Aza-2’-deoxycytidine; DAC) plus daunorubicin as a first line treatment in patients with acute myeloid leukemia: preliminary observations. Leukemia, 1997, 11(Suppl 1): S28-S31.
|
24. |
Nakatsuka S, Takakuwa T, Tomita Y, et al. Hypermethylation of death-associated protein (DAP) kinase CpG island is frequent not only in B-cell but also in T- and natural killer (NK)/T-cell malignancies. Cancer Sci, 2003, 94(1): 87-91.
|
25. |
Lesokhin AM, Ansell SM, Armand P, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol, 2016, 34(23): 2698-2704.
|
26. |
Bar-Sela G, Bergman R. Complete regression of mycosis fungoides after ipilimumab therapy for advanced melanoma. JAAD Case Rep, 2015, 1(2): 99-100.
|
27. |
Sekulic A, Liang WS, Tembe W, et al. Personalized treatment of Sézary syndrome by targeting a novel CTLA4: CD28 fusion. Mol Genet Genomic Med, 2015, 3(2): 130-136.
|
28. |
Marchi E, Ma H, Montanari F, et al. The integration of PD1 blockade with epigenetic therapy is highly active and safe in heavily treated patients with T-cell lymphoma (PTCL) and cutaneous T-cell lymphoma (CTCL). J Clin Oncol, 2020, 38(15_suppl): 8049.
|
29. |
Roccuzzo G, Giordano S, Fava P, et al. Immune check point inhibitors in primary cutaneous T-cell lymphomas: biologic rationale, clinical results and future perspectives. Front Oncol, 2021, 11: 733770.
|