- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China;
Silent brain infarct (SBI) is frequently identified after transcatheter aortic valve replacement (TAVR) when patients are screened with imaging examination. With the indication of TAVR extending to lower-risk and younger patients, attention should be paid to SBI that poses a potential long-term threat to the nervous system. This review expounds the basic information, risk factors, mechanism, possible outcomes, prognosis, and prevention of SBI, to provide a reference for the management of SBI after TAVR in clinical practice.
Citation: JI Xingyu, XIONG Tianyuan. Research progress of silent brain infarct after transcatheter aortic valve replacement. West China Medical Journal, 2023, 38(9): 1396-1404. doi: 10.7507/1002-0179.202307185 Copy
1. | Otto CM, Nishimura RA, Bonow RO, et al. 2020 ACC/AHA Guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 2021, 143(5): e72-e227. |
2. | Van Mieghem NM, van Gils L, Ahmad H, et al. Filter-based cerebral embolic protection with transcatheter aortic valve implantation: the randomised MISTRAL-C trial. EuroIntervention, 2016, 12(4): 499-507. |
3. | Kapadia SR, Huded CP, Kodali SK, et al. Stroke after surgical versus transfemoral transcatheter aortic valve replacement in the PARTNER trial. J Am Coll Cardiol, 2018, 72(20): 2415-2426. |
4. | Grube E, Sinning JM. The “Big Five” complications after transcatheter aortic valve replacement: do we still have to be afraid of them?. JACC Cardiovasc Interv, 2019, 12(4): 370-372. |
5. | Haussig S, Mangner N, Dwyer MG, et al. Effect of a cerebral protection device on brain lesions following transcatheter aortic valve implantation in patients with severe aortic stenosis: the CLEAN-TAVI randomized clinical trial. JAMA, 2016, 316(6): 592-601. |
6. | Sacco RL, Kasner SE, Broderick JP, et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 2013, 44(7): 2064-2089. |
7. | Nombela-Franco L, Armijo G, Tirado-Conte G. Cerebral embolic protection devices during transcatheter aortic valve implantation: clinical versus silent embolism. J Thorac Dis, 2018, 10(Suppl 30): S3604-S3613. |
8. | De Carlo M, Liga R, Migaleddu G, et al. Evolution, predictors, and neurocognitive effects of silent cerebral embolism during transcatheter aortic valve replacement. JACC Cardiovasc Interv, 2020, 13(11): 1291-1300. |
9. | Fairbairn TA, Mather AN, Bijsterveld P, et al. Diffusion-weighted MRI determined cerebral embolic infarction following transcatheter aortic valve implantation: assessment of predictive risk factors and the relationship to subsequent health status. Heart, 2012, 98(1): 18-23. |
10. | Vlastra W, Vendrik J, Koch KT, et al. Cerebral protection devices during transcatheter aortic valve implantation. Trends Cardiovasc Med, 2018, 28(6): 412-418. |
11. | Nietlispach F, Wijesinghe N, Gurvitch R, et al. An embolic deflection device for aortic valve interventions. JACC Cardiovasc Interv, 2010, 3(11): 1133-1138. |
12. | Lansky AJ, Messé SR, Brickman AM, et al. Proposed standardized neurological endpoints for cardiovascular clinical trials: an academic research consortium initiative. Eur Heart J, 2018, 39(19): 1687-1697. |
13. | Indja B, Woldendorp K, Vallely MP, et al. Silent brain infarcts following cardiac procedures: a systematic review and meta-analysis. J Am Heart Assoc, 2019, 8(9): e010920. |
14. | Kapadia S, Agarwal S, Miller DC, et al. Insights into timing, risk factors, and outcomes of stroke and transient ischemic attack after transcatheter aortic valve replacement in the PARTNER trial (placement of aortic transcatheter valves). Circ Cardiovasc Interv, 2016, 9(9): e002981. |
15. | Beohar N, Kirtane AJ, Blackstone E, et al. Trends in complications and outcomes of patients undergoing transfemoral transcatheter aortic valve replacement: experience from the PARTNER continued access registry. JACC Cardiovasc Interv, 2016, 9(4): 355-363. |
16. | Makkar RR, Fontana GP, Jilaihawi H, et al. Transcatheter aortic-valve replacement for inoperable severe aortic stenosis. N Engl J Med, 2012, 366(18): 1696-1704. |
17. | Kim WK, Schäfer U, Tchetche D, et al. Incidence and outcome of peri-procedural transcatheter heart valve embolization and migration: the TRAVEL registry (TranscatheteR HeArt Valve EmboLization and Migration). Eur Heart J, 2019, 40(38): 3156-3165. |
18. | Woldendorp K, Indja B, Bannon PG, et al. Silent brain infarcts and early cognitive outcomes after transcatheter aortic valve implantation: a systematic review and meta-analysis. Eur Heart J, 2021, 42(10): 1004-1015. |
19. | Rodés-Cabau J, Dumont E, Boone RH, et al. Cerebral embolism following transcatheter aortic valve implantation: comparison of transfemoral and transapical approaches. J Am Coll Cardiol, 2011, 57(1): 18-28. |
20. | Ghanem A, Kocurek J, Sinning JM, et al. Cognitive trajectory after transcatheter aortic valve implantation. Circ Cardiovasc Interv, 2013, 6(6): 615-624. |
21. | Alassar A, Soppa G, Edsell M, et al. Incidence and mechanisms of cerebral ischemia after transcatheter aortic valve implantation compared with surgical aortic valve replacement. Ann Thorac Surg, 2015, 99(3): 802-808. |
22. | Uddin A, Fairbairn TA, Djoukhader IK, et al. Consequence of cerebral embolism after transcatheter aortic valve implantation compared with contemporary surgical aortic valve replacement: effect on health-related quality of life. Circ Cardiovasc Interv, 2015, 8(3): e001913. |
23. | Doerner J, Kupczyk PA, Wilsing M, et al. Cerebral white matter lesion burden is associated with the degree of aortic valve calcification and predicts peri-procedural cerebrovascular events in patients undergoing transcatheter aortic valve implantation (TAVI). Catheter Cardiovasc Interv, 2018, 91(4): 774-782. |
24. | Kajio K, Mizutani K, Hara M, et al. Self-expandable transcatheter aortic valve replacement is associated with frequent periprocedural stroke detected by diffusion-weighted magnetic resonance imaging. J Cardiol, 2019, 74(1): 27-33. |
25. | Fan J, Fang X, Liu C, et al. Brain injury after transcatheter replacement of bicuspid versus tricuspid aortic valves. J Am Coll Cardiol, 2020, 76(22): 2579-2590. |
26. | Faroux L, Junquera L, Mohammadi S, et al. Cerebral embolism after transcarotid transcatheter aortic valve replacement: factors associated with ipsilateral ischemic burden. Ann Thorac Surg, 2021, 111(3): 951-957. |
27. | Lansky AJ, Makkar R, Nazif T, et al. A randomized evaluation of the TriGuardTM HDH cerebral embolic protection device to Reduce the Impact of Cerebral Embolic LEsions after TransCatheter Aortic Valve ImplanTation: the REFLECT I trial. Eur Heart J, 2021, 42(27): 2670-2679. |
28. | Apor A, Bartykowszki A, Szilveszter B, et al. Subclinical leaflet thrombosis after transcatheter aortic valve implantation is associated with silent brain injury on brain magnetic resonance imaging. Eur Heart J Cardiovasc Imaging, 2022, 23(12): 1584-1595. |
29. | Van Belle E, Debry N, Vincent F, et al. Cerebral microbleeds during transcatheter aortic valve replacement: a prospective magnetic resonance imaging cohort. Circulation, 2022, 146(5): 383-397. |
30. | Suhai FI, Varga A, Szilveszter B, et al. Predictors and neurological consequences of periprocedural cerebrovascular events following transcatheter aortic valve implantation with self-expanding valves. Front Cardiovasc Med, 2022, 9: 951943. |
31. | Liu X, Zhou D, Fan J, et al. Cerebral ischemic lesions after transcatheter aortic valve implantation in patients with non-calcific aortic stenosis. J Clin Med, 2022, 11(21): 6502. |
32. | Kapadia SR, Kodali S, Makkar R, et al. Protection against cerebral embolism during transcatheter aortic valve replacement. J Am Coll Cardiol, 2017, 69(4): 367-377. |
33. | Samim M, Hendrikse J, van der Worp HB, et al. Silent ischemic brain lesions after transcatheter aortic valve replacement: lesion distribution and predictors. Clin Res Cardiol, 2015, 104(5): 430-438. |
34. | Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol, 2009, 8(11): 1006-1018. |
35. | Robinson RG, Jorge RE. Post-stroke depression: a review. Am J Psychiatry, 2016, 173(3): 221-231. |
36. | Vermeer SE, Prins ND, den Heijer T, et al. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med, 2003, 348(13): 1215-1222. |
37. | Weaver NA, Kuijf HJ, Aben HP, et al. Strategic infarct locations for post-stroke cognitive impairment: a pooled analysis of individual patient data from 12 acute ischaemic stroke cohorts. Lancet Neurol, 2021, 20(6): 448-459. |
38. | Chen DW, Wang YX, Shi J, et al. Multiple silent brain infarcts are associated with severer stroke in patients with first-ever ischemic stroke without advanced leukoaraiosis. J Stroke Cerebrovasc Dis, 2017, 26(9): 1988-1995. |
39. | Albers GW, Thijs VN, Wechsler L, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol, 2006, 60(5): 508-517. |
40. | Vlastra W, Jimenez-Quevedo P, Tchétché D, et al. Predictors, incidence, and outcomes of patients undergoing transfemoral transcatheter aortic valve implantation complicated by stroke. Circ Cardiovasc Interv, 2019, 12(3): e007546. |
41. | Drews T, Pasic M, Buz S, et al. Transcranial Doppler sound detection of cerebral microembolism during transapical aortic valve implantation. Thorac Cardiovasc Surg, 2011, 59(4): 237-242. |
42. | Kahlert P, Al-Rashid F, Döttger P, et al. Cerebral embolization during transcatheter aortic valve implantation: a transcranial Doppler study. Circulation, 2012, 126(10): 1245-1255. |
43. | Erdoes G, Basciani R, Huber C, et al. Transcranial Doppler-detected cerebral embolic load during transcatheter aortic valve implantation. Eur J Cardiothorac Surg, 2012, 41(4): 778-783. |
44. | Schmidt T, Schlüter M, Alessandrini H, et al. Histology of debris captured by a cerebral protection system during transcatheter valve-in-valve implantation. Heart, 2016, 102(19): 1573-1580. |
45. | Van Mieghem NM, Schipper ME, Ladich E, et al. Histopathology of embolic debris captured during transcatheter aortic valve replacement. Circulation, 2013, 127(22): 2194-2201. |
46. | Breyne J, Juthier F, Corseaux D, et al. Atherosclerotic-like process in aortic stenosis: activation of the tissue factor-thrombin pathway and potential role through osteopontin alteration. Atherosclerosis, 2010, 213(2): 369-376. |
47. | Hynes BG, Rodés-Cabau J. Transcatheter aortic valve implantation and cerebrovascular events: the current state of the art. Ann N Y Acad Sci, 2012, 1254: 151-163. |
48. | Devereux RB, de Simone G, Arnett DK, et al. Normal limits in relation to age, body size and gender of two-dimensional echocardiographic aortic root dimensions in persons ≥15 years of age. Am J Cardiol, 2012, 110(8): 1189-1194. |
49. | Buellesfeld L, Stortecky S, Kalesan B, et al. Aortic root dimensions among patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. JACC Cardiovasc Interv, 2013, 6(1): 72-83. |
50. | Auffret V, Regueiro A, Del Trigo M, et al. Predictors of early cerebrovascular events in patients with aortic stenosis undergoing transcatheter aortic valve replacement. J Am Coll Cardiol, 2016, 68(7): 673-684. |
51. | Miller DC, Blackstone EH, Mack MJ, et al. Transcatheter (TAVR) versus surgical (AVR) aortic valve replacement: occurrence, hazard, risk factors, and consequences of neurologic events in the PARTNER trial. J Thorac Cardiovasc Surg, 2012, 143(4): 832-843. |
52. | Toyoda K, Ninomiya T. Stroke and cerebrovascular diseases in patients with chronic kidney disease. Lancet Neurol, 2014, 13(8): 823-833. |
53. | Toyoda K. Cerebral small vessel disease and chronic kidney disease. J Stroke, 2015, 17(1): 31-37. |
54. | Shukla V, Shakya AK, Perez-Pinzon MA, et al. Cerebral ischemic damage in diabetes: an inflammatory perspective. J Neuroinflammation, 2017, 14(1): 21. |
55. | Eggebrecht H, Schmermund A, Voigtländer T, et al. Risk of stroke after transcatheter aortic valve implantation (TAVI): a meta-analysis of 10, 037 published patients. EuroIntervention, 2012, 8(1): 129-138. |
56. | Astarci P, Glineur D, Kefer J, et al. Magnetic resonance imaging evaluation of cerebral embolization during percutaneous aortic valve implantation: comparison of transfemoral and trans-apical approaches using Edwards Sapiens valve. Eur J Cardiothorac Surg, 2011, 40(2): 475-479. |
57. | Minha S, Waksman R, Satler LP, et al. Learning curves for transfemoral transcatheter aortic valve replacement in the PARTNER-I trial: Success and safety. Catheter Cardiovasc Interv, 2016, 87(1): 165-175. |
58. | Vermeer SE, Hollander M, van Dijk EJ, et al. Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study. Stroke, 2003, 34(5): 1126-1129. |
59. | Bernick C, Kuller L, Dulberg C, et al. Silent MRI infarcts and the risk of future stroke: the cardiovascular health study. Neurology, 2001, 57(7): 1222-1229. |
60. | Choi SH, Na DL, Chung CS, et al. Diffusion-weighted MRI in vascular dementia. Neurology, 2000, 54(1): 83-89. |
61. | Fanning JP, Wesley AJ, Walters DL, et al. Neurological injury in intermediate-risk transcatheter aortic valve implantation. J Am Heart Assoc, 2016, 5(11): e004203. |
62. | Knipp SC, Matatko N, Schlamann M, et al. Small ischemic brain lesions after cardiac valve replacement detected by diffusion-weighted magnetic resonance imaging: relation to neurocognitive function. Eur J Cardiothorac Surg, 2005, 28(1): 88-96. |
63. | Spaziano M, Francese DP, Leon MB, et al. Imaging and functional testing to assess clinical and subclinical neurological events after transcatheter or surgical aortic valve replacement: a comprehensive review. J Am Coll Cardiol, 2014, 64(18): 1950-1963. |
64. | Ghanem A, Müller A, Nähle CP, et al. Risk and fate of cerebral embolism after transfemoral aortic valve implantation: a prospective pilot study with diffusion-weighted magnetic resonance imaging. J Am Coll Cardiol, 2010, 55(14): 1427-1432. |
65. | Kahlert P, Knipp SC, Schlamann M, et al. Silent and apparent cerebral ischemia after percutaneous transfemoral aortic valve implantation: a diffusion-weighted magnetic resonance imaging study. Circulation, 2010, 121(7): 870-878. |
66. | Gasior T, Mangner N, Bijoch J, et al. Cerebral embolic protection systems for transcatheter aortic valve replacement. J Interv Cardiol, 2018, 31(6): 891-898. |
67. | Kawakami R, Gada H, Rinaldi MJ, et al. Characterization of cerebral embolic capture using the SENTINEL device during transcatheter aortic valve implantation in low to intermediate -risk patients: the SENTINEL-LIR study. Circ Cardiovasc Interv, 2022, 15(4): e011358. |
68. | Stachon P, Kaier K, Heidt T, et al. The use and outcomes of cerebral protection devices for patients under going transfemoral transcatheter aortic valve replacement in clinical practice. JACC Cardiovasc Interv, 2021, 14(2): 161-168. |
69. | Yadav JS, Wholey MH, Kuntz RE, et al. Protected carotid-artery stenting versus endarterectomy in high-risk patients. N Engl J Med, 2004, 351(15): 1493-1501. |
70. | Butala NM, Makkar R, Secemsky EA, et al. Cerebral embolic protection and outcomes of transcatheter aortic valve replacement: results from the transcatheter valve therapy registry. Circulation, 2021, 143(23): 2229-2240. |
71. | Seeger J, Gonska B, Otto M, et al. Cerebral embolic protection during transcatheter aortic valve replacement significantly reduces death and stroke compared with unprotected procedures. JACC Cardiovasc Interv, 2017, 10(22): 2297-2303. |
72. | Seeger J, Kapadia SR, Kodali S, et al. Rate of peri-procedural stroke observed with cerebral embolic protection during transcatheter aortic valve replacement: a patient-level propensity-matched analysis. Eur Heart J, 2019, 40(17): 1334-1340. |
73. | Kroon HG, van der Werf HW, Hoeks SE, et al. Early clinical impact of cerebral embolic protection in patients undergoing transcatheter aortic valve replacement. Circ Cardiovasc Interv, 2019, 12(6): e007605. |
74. | Kapadia SR, Makkar R, Leon M, et al. Cerebral embolic protection during transcatheter aortic-valve replacement. N Engl J Med, 2022, 387(14): 1253-1263. |
75. | Kharbanda RK, Perkins AD, Kennedy J, et al. Routine cerebral embolic protection in transcatheter aortic valve implantation: rationale and design of the randomised British Heart Foundation PROTECT-TAVI trial. EuroIntervention, 2023, 18(17): 1428-1435. |
76. | Wendt D, Kleinbongard P, Knipp S, et al. Intraaortic protection from embolization in patients undergoing transaortic transcatheter aortic valve implantation. Ann Thorac Surg, 2015, 100(2): 686-691. |
77. | Pérez-Camargo D, Travieso A, Carnero-Alcázar M, et al. Neurological outcomes of transcatheter aortic valve implantation with or without cerebral embolic protection devices: a meta-analysis. J Stroke Cerebrovasc Dis, 2022, 31(9): 106605. |
78. | Giustino G, Mehran R, Veltkamp R, et al. Neurological outcomes with embolic protection devices in patients undergoing transcatheter aortic valve replacement: a systematic review and meta-analysis of randomized controlled trials. JACC Cardiovasc Interv, 2016, 9(20): 2124-2133. |
79. | Lansky AJ, Schofer J, Tchetche D, et al. A prospective randomized evaluation of the TriGuardTM HDH embolic DEFLE CTion device during transcatheter aortic valve implantation: results f rom the DEFLECT III trial. Eur Heart J, 2015, 36(31): 2070-2078. |
80. | Nazif TM, Moses J, Sharma R, et al. Randomized evaluation of TriGuard 3 cerebral embolic protection after transcatheter aortic valve replacement: REFLECT II. JACC Cardiovasc Interv, 2021, 14(5): 515-527. |
81. | Rodés-Cabau J, Kahlert P, Neumann FJ, et al. Feasibility and exploratory efficacy evaluation of the Embrella Embolic Deflector system for the prevention of cerebral emboli in patients undergoing transcatheter aortic valve replacement: the PROTAVI-C pilot study. JACC Cardiovasc Interv, 2014, 7(10): 1146-1155. |
82. | Bagur R, Solo K, Alghofaili S, et al. Cerebral embolic protection devices during transcatheter aortic valve implantation: systematic review and meta-analysis. Stroke, 2017, 48(5): 1306-1315. |
83. | Mastoris I, Schoos MM, Dangas GD, et al. Stroke after transcatheter aortic valve replacement: incidence, risk factors, prognosis, and preventive strategies. Clin Cardiol, 2014, 37(12): 756-764. |
84. | Jimenez Diaz VA, Estevez Loureiro R, Baz Alonso JA, et al. Stroke prevention during and after transcatheter aortic valve implantation: from cerebral protection devices to antithrombotic management. Front Cardiovasc Med, 2022, 9: 958732. |
85. | Ten Berg JM, Brouwer J. Protamine in patients undergoing transcatheter aortic valve replacement: why not?. JACC Cardiovasc Interv, 2020, 13(12): 1481-1483. |
86. | Writing Committee Members, Otto CM, Nishimura RA, et al. 2020 ACC/AHA Guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol, 2021, 77(4): 450-500. |
87. | Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J, 2017, 38(36): 2739-2791. |
88. | Brouwer J, Nijenhuis VJ, Delewi R, et al. Aspirin with or without clopidogrel after transcatheter aortic-valve implantation. N Engl J Med, 2020, 383(15): 1447-1457. |
89. | Maes F, Stabile E, Ussia GP, et al. Meta-analysis comparing single versus dual antiplatelet therapy following transcatheter aortic valve implantation. Am J Cardiol, 2018, 122(2): 310-315. |
90. | Nijenhuis VJ, Brouwer J, Delewi R, et al. Anticoagulation with or without clopidogrel after transcatheter aortic-valve implantation. N Engl J Med, 2020, 382(18): 1696-1707. |
- 1. Otto CM, Nishimura RA, Bonow RO, et al. 2020 ACC/AHA Guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 2021, 143(5): e72-e227.
- 2. Van Mieghem NM, van Gils L, Ahmad H, et al. Filter-based cerebral embolic protection with transcatheter aortic valve implantation: the randomised MISTRAL-C trial. EuroIntervention, 2016, 12(4): 499-507.
- 3. Kapadia SR, Huded CP, Kodali SK, et al. Stroke after surgical versus transfemoral transcatheter aortic valve replacement in the PARTNER trial. J Am Coll Cardiol, 2018, 72(20): 2415-2426.
- 4. Grube E, Sinning JM. The “Big Five” complications after transcatheter aortic valve replacement: do we still have to be afraid of them?. JACC Cardiovasc Interv, 2019, 12(4): 370-372.
- 5. Haussig S, Mangner N, Dwyer MG, et al. Effect of a cerebral protection device on brain lesions following transcatheter aortic valve implantation in patients with severe aortic stenosis: the CLEAN-TAVI randomized clinical trial. JAMA, 2016, 316(6): 592-601.
- 6. Sacco RL, Kasner SE, Broderick JP, et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 2013, 44(7): 2064-2089.
- 7. Nombela-Franco L, Armijo G, Tirado-Conte G. Cerebral embolic protection devices during transcatheter aortic valve implantation: clinical versus silent embolism. J Thorac Dis, 2018, 10(Suppl 30): S3604-S3613.
- 8. De Carlo M, Liga R, Migaleddu G, et al. Evolution, predictors, and neurocognitive effects of silent cerebral embolism during transcatheter aortic valve replacement. JACC Cardiovasc Interv, 2020, 13(11): 1291-1300.
- 9. Fairbairn TA, Mather AN, Bijsterveld P, et al. Diffusion-weighted MRI determined cerebral embolic infarction following transcatheter aortic valve implantation: assessment of predictive risk factors and the relationship to subsequent health status. Heart, 2012, 98(1): 18-23.
- 10. Vlastra W, Vendrik J, Koch KT, et al. Cerebral protection devices during transcatheter aortic valve implantation. Trends Cardiovasc Med, 2018, 28(6): 412-418.
- 11. Nietlispach F, Wijesinghe N, Gurvitch R, et al. An embolic deflection device for aortic valve interventions. JACC Cardiovasc Interv, 2010, 3(11): 1133-1138.
- 12. Lansky AJ, Messé SR, Brickman AM, et al. Proposed standardized neurological endpoints for cardiovascular clinical trials: an academic research consortium initiative. Eur Heart J, 2018, 39(19): 1687-1697.
- 13. Indja B, Woldendorp K, Vallely MP, et al. Silent brain infarcts following cardiac procedures: a systematic review and meta-analysis. J Am Heart Assoc, 2019, 8(9): e010920.
- 14. Kapadia S, Agarwal S, Miller DC, et al. Insights into timing, risk factors, and outcomes of stroke and transient ischemic attack after transcatheter aortic valve replacement in the PARTNER trial (placement of aortic transcatheter valves). Circ Cardiovasc Interv, 2016, 9(9): e002981.
- 15. Beohar N, Kirtane AJ, Blackstone E, et al. Trends in complications and outcomes of patients undergoing transfemoral transcatheter aortic valve replacement: experience from the PARTNER continued access registry. JACC Cardiovasc Interv, 2016, 9(4): 355-363.
- 16. Makkar RR, Fontana GP, Jilaihawi H, et al. Transcatheter aortic-valve replacement for inoperable severe aortic stenosis. N Engl J Med, 2012, 366(18): 1696-1704.
- 17. Kim WK, Schäfer U, Tchetche D, et al. Incidence and outcome of peri-procedural transcatheter heart valve embolization and migration: the TRAVEL registry (TranscatheteR HeArt Valve EmboLization and Migration). Eur Heart J, 2019, 40(38): 3156-3165.
- 18. Woldendorp K, Indja B, Bannon PG, et al. Silent brain infarcts and early cognitive outcomes after transcatheter aortic valve implantation: a systematic review and meta-analysis. Eur Heart J, 2021, 42(10): 1004-1015.
- 19. Rodés-Cabau J, Dumont E, Boone RH, et al. Cerebral embolism following transcatheter aortic valve implantation: comparison of transfemoral and transapical approaches. J Am Coll Cardiol, 2011, 57(1): 18-28.
- 20. Ghanem A, Kocurek J, Sinning JM, et al. Cognitive trajectory after transcatheter aortic valve implantation. Circ Cardiovasc Interv, 2013, 6(6): 615-624.
- 21. Alassar A, Soppa G, Edsell M, et al. Incidence and mechanisms of cerebral ischemia after transcatheter aortic valve implantation compared with surgical aortic valve replacement. Ann Thorac Surg, 2015, 99(3): 802-808.
- 22. Uddin A, Fairbairn TA, Djoukhader IK, et al. Consequence of cerebral embolism after transcatheter aortic valve implantation compared with contemporary surgical aortic valve replacement: effect on health-related quality of life. Circ Cardiovasc Interv, 2015, 8(3): e001913.
- 23. Doerner J, Kupczyk PA, Wilsing M, et al. Cerebral white matter lesion burden is associated with the degree of aortic valve calcification and predicts peri-procedural cerebrovascular events in patients undergoing transcatheter aortic valve implantation (TAVI). Catheter Cardiovasc Interv, 2018, 91(4): 774-782.
- 24. Kajio K, Mizutani K, Hara M, et al. Self-expandable transcatheter aortic valve replacement is associated with frequent periprocedural stroke detected by diffusion-weighted magnetic resonance imaging. J Cardiol, 2019, 74(1): 27-33.
- 25. Fan J, Fang X, Liu C, et al. Brain injury after transcatheter replacement of bicuspid versus tricuspid aortic valves. J Am Coll Cardiol, 2020, 76(22): 2579-2590.
- 26. Faroux L, Junquera L, Mohammadi S, et al. Cerebral embolism after transcarotid transcatheter aortic valve replacement: factors associated with ipsilateral ischemic burden. Ann Thorac Surg, 2021, 111(3): 951-957.
- 27. Lansky AJ, Makkar R, Nazif T, et al. A randomized evaluation of the TriGuardTM HDH cerebral embolic protection device to Reduce the Impact of Cerebral Embolic LEsions after TransCatheter Aortic Valve ImplanTation: the REFLECT I trial. Eur Heart J, 2021, 42(27): 2670-2679.
- 28. Apor A, Bartykowszki A, Szilveszter B, et al. Subclinical leaflet thrombosis after transcatheter aortic valve implantation is associated with silent brain injury on brain magnetic resonance imaging. Eur Heart J Cardiovasc Imaging, 2022, 23(12): 1584-1595.
- 29. Van Belle E, Debry N, Vincent F, et al. Cerebral microbleeds during transcatheter aortic valve replacement: a prospective magnetic resonance imaging cohort. Circulation, 2022, 146(5): 383-397.
- 30. Suhai FI, Varga A, Szilveszter B, et al. Predictors and neurological consequences of periprocedural cerebrovascular events following transcatheter aortic valve implantation with self-expanding valves. Front Cardiovasc Med, 2022, 9: 951943.
- 31. Liu X, Zhou D, Fan J, et al. Cerebral ischemic lesions after transcatheter aortic valve implantation in patients with non-calcific aortic stenosis. J Clin Med, 2022, 11(21): 6502.
- 32. Kapadia SR, Kodali S, Makkar R, et al. Protection against cerebral embolism during transcatheter aortic valve replacement. J Am Coll Cardiol, 2017, 69(4): 367-377.
- 33. Samim M, Hendrikse J, van der Worp HB, et al. Silent ischemic brain lesions after transcatheter aortic valve replacement: lesion distribution and predictors. Clin Res Cardiol, 2015, 104(5): 430-438.
- 34. Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol, 2009, 8(11): 1006-1018.
- 35. Robinson RG, Jorge RE. Post-stroke depression: a review. Am J Psychiatry, 2016, 173(3): 221-231.
- 36. Vermeer SE, Prins ND, den Heijer T, et al. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med, 2003, 348(13): 1215-1222.
- 37. Weaver NA, Kuijf HJ, Aben HP, et al. Strategic infarct locations for post-stroke cognitive impairment: a pooled analysis of individual patient data from 12 acute ischaemic stroke cohorts. Lancet Neurol, 2021, 20(6): 448-459.
- 38. Chen DW, Wang YX, Shi J, et al. Multiple silent brain infarcts are associated with severer stroke in patients with first-ever ischemic stroke without advanced leukoaraiosis. J Stroke Cerebrovasc Dis, 2017, 26(9): 1988-1995.
- 39. Albers GW, Thijs VN, Wechsler L, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol, 2006, 60(5): 508-517.
- 40. Vlastra W, Jimenez-Quevedo P, Tchétché D, et al. Predictors, incidence, and outcomes of patients undergoing transfemoral transcatheter aortic valve implantation complicated by stroke. Circ Cardiovasc Interv, 2019, 12(3): e007546.
- 41. Drews T, Pasic M, Buz S, et al. Transcranial Doppler sound detection of cerebral microembolism during transapical aortic valve implantation. Thorac Cardiovasc Surg, 2011, 59(4): 237-242.
- 42. Kahlert P, Al-Rashid F, Döttger P, et al. Cerebral embolization during transcatheter aortic valve implantation: a transcranial Doppler study. Circulation, 2012, 126(10): 1245-1255.
- 43. Erdoes G, Basciani R, Huber C, et al. Transcranial Doppler-detected cerebral embolic load during transcatheter aortic valve implantation. Eur J Cardiothorac Surg, 2012, 41(4): 778-783.
- 44. Schmidt T, Schlüter M, Alessandrini H, et al. Histology of debris captured by a cerebral protection system during transcatheter valve-in-valve implantation. Heart, 2016, 102(19): 1573-1580.
- 45. Van Mieghem NM, Schipper ME, Ladich E, et al. Histopathology of embolic debris captured during transcatheter aortic valve replacement. Circulation, 2013, 127(22): 2194-2201.
- 46. Breyne J, Juthier F, Corseaux D, et al. Atherosclerotic-like process in aortic stenosis: activation of the tissue factor-thrombin pathway and potential role through osteopontin alteration. Atherosclerosis, 2010, 213(2): 369-376.
- 47. Hynes BG, Rodés-Cabau J. Transcatheter aortic valve implantation and cerebrovascular events: the current state of the art. Ann N Y Acad Sci, 2012, 1254: 151-163.
- 48. Devereux RB, de Simone G, Arnett DK, et al. Normal limits in relation to age, body size and gender of two-dimensional echocardiographic aortic root dimensions in persons ≥15 years of age. Am J Cardiol, 2012, 110(8): 1189-1194.
- 49. Buellesfeld L, Stortecky S, Kalesan B, et al. Aortic root dimensions among patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. JACC Cardiovasc Interv, 2013, 6(1): 72-83.
- 50. Auffret V, Regueiro A, Del Trigo M, et al. Predictors of early cerebrovascular events in patients with aortic stenosis undergoing transcatheter aortic valve replacement. J Am Coll Cardiol, 2016, 68(7): 673-684.
- 51. Miller DC, Blackstone EH, Mack MJ, et al. Transcatheter (TAVR) versus surgical (AVR) aortic valve replacement: occurrence, hazard, risk factors, and consequences of neurologic events in the PARTNER trial. J Thorac Cardiovasc Surg, 2012, 143(4): 832-843.
- 52. Toyoda K, Ninomiya T. Stroke and cerebrovascular diseases in patients with chronic kidney disease. Lancet Neurol, 2014, 13(8): 823-833.
- 53. Toyoda K. Cerebral small vessel disease and chronic kidney disease. J Stroke, 2015, 17(1): 31-37.
- 54. Shukla V, Shakya AK, Perez-Pinzon MA, et al. Cerebral ischemic damage in diabetes: an inflammatory perspective. J Neuroinflammation, 2017, 14(1): 21.
- 55. Eggebrecht H, Schmermund A, Voigtländer T, et al. Risk of stroke after transcatheter aortic valve implantation (TAVI): a meta-analysis of 10, 037 published patients. EuroIntervention, 2012, 8(1): 129-138.
- 56. Astarci P, Glineur D, Kefer J, et al. Magnetic resonance imaging evaluation of cerebral embolization during percutaneous aortic valve implantation: comparison of transfemoral and trans-apical approaches using Edwards Sapiens valve. Eur J Cardiothorac Surg, 2011, 40(2): 475-479.
- 57. Minha S, Waksman R, Satler LP, et al. Learning curves for transfemoral transcatheter aortic valve replacement in the PARTNER-I trial: Success and safety. Catheter Cardiovasc Interv, 2016, 87(1): 165-175.
- 58. Vermeer SE, Hollander M, van Dijk EJ, et al. Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study. Stroke, 2003, 34(5): 1126-1129.
- 59. Bernick C, Kuller L, Dulberg C, et al. Silent MRI infarcts and the risk of future stroke: the cardiovascular health study. Neurology, 2001, 57(7): 1222-1229.
- 60. Choi SH, Na DL, Chung CS, et al. Diffusion-weighted MRI in vascular dementia. Neurology, 2000, 54(1): 83-89.
- 61. Fanning JP, Wesley AJ, Walters DL, et al. Neurological injury in intermediate-risk transcatheter aortic valve implantation. J Am Heart Assoc, 2016, 5(11): e004203.
- 62. Knipp SC, Matatko N, Schlamann M, et al. Small ischemic brain lesions after cardiac valve replacement detected by diffusion-weighted magnetic resonance imaging: relation to neurocognitive function. Eur J Cardiothorac Surg, 2005, 28(1): 88-96.
- 63. Spaziano M, Francese DP, Leon MB, et al. Imaging and functional testing to assess clinical and subclinical neurological events after transcatheter or surgical aortic valve replacement: a comprehensive review. J Am Coll Cardiol, 2014, 64(18): 1950-1963.
- 64. Ghanem A, Müller A, Nähle CP, et al. Risk and fate of cerebral embolism after transfemoral aortic valve implantation: a prospective pilot study with diffusion-weighted magnetic resonance imaging. J Am Coll Cardiol, 2010, 55(14): 1427-1432.
- 65. Kahlert P, Knipp SC, Schlamann M, et al. Silent and apparent cerebral ischemia after percutaneous transfemoral aortic valve implantation: a diffusion-weighted magnetic resonance imaging study. Circulation, 2010, 121(7): 870-878.
- 66. Gasior T, Mangner N, Bijoch J, et al. Cerebral embolic protection systems for transcatheter aortic valve replacement. J Interv Cardiol, 2018, 31(6): 891-898.
- 67. Kawakami R, Gada H, Rinaldi MJ, et al. Characterization of cerebral embolic capture using the SENTINEL device during transcatheter aortic valve implantation in low to intermediate -risk patients: the SENTINEL-LIR study. Circ Cardiovasc Interv, 2022, 15(4): e011358.
- 68. Stachon P, Kaier K, Heidt T, et al. The use and outcomes of cerebral protection devices for patients under going transfemoral transcatheter aortic valve replacement in clinical practice. JACC Cardiovasc Interv, 2021, 14(2): 161-168.
- 69. Yadav JS, Wholey MH, Kuntz RE, et al. Protected carotid-artery stenting versus endarterectomy in high-risk patients. N Engl J Med, 2004, 351(15): 1493-1501.
- 70. Butala NM, Makkar R, Secemsky EA, et al. Cerebral embolic protection and outcomes of transcatheter aortic valve replacement: results from the transcatheter valve therapy registry. Circulation, 2021, 143(23): 2229-2240.
- 71. Seeger J, Gonska B, Otto M, et al. Cerebral embolic protection during transcatheter aortic valve replacement significantly reduces death and stroke compared with unprotected procedures. JACC Cardiovasc Interv, 2017, 10(22): 2297-2303.
- 72. Seeger J, Kapadia SR, Kodali S, et al. Rate of peri-procedural stroke observed with cerebral embolic protection during transcatheter aortic valve replacement: a patient-level propensity-matched analysis. Eur Heart J, 2019, 40(17): 1334-1340.
- 73. Kroon HG, van der Werf HW, Hoeks SE, et al. Early clinical impact of cerebral embolic protection in patients undergoing transcatheter aortic valve replacement. Circ Cardiovasc Interv, 2019, 12(6): e007605.
- 74. Kapadia SR, Makkar R, Leon M, et al. Cerebral embolic protection during transcatheter aortic-valve replacement. N Engl J Med, 2022, 387(14): 1253-1263.
- 75. Kharbanda RK, Perkins AD, Kennedy J, et al. Routine cerebral embolic protection in transcatheter aortic valve implantation: rationale and design of the randomised British Heart Foundation PROTECT-TAVI trial. EuroIntervention, 2023, 18(17): 1428-1435.
- 76. Wendt D, Kleinbongard P, Knipp S, et al. Intraaortic protection from embolization in patients undergoing transaortic transcatheter aortic valve implantation. Ann Thorac Surg, 2015, 100(2): 686-691.
- 77. Pérez-Camargo D, Travieso A, Carnero-Alcázar M, et al. Neurological outcomes of transcatheter aortic valve implantation with or without cerebral embolic protection devices: a meta-analysis. J Stroke Cerebrovasc Dis, 2022, 31(9): 106605.
- 78. Giustino G, Mehran R, Veltkamp R, et al. Neurological outcomes with embolic protection devices in patients undergoing transcatheter aortic valve replacement: a systematic review and meta-analysis of randomized controlled trials. JACC Cardiovasc Interv, 2016, 9(20): 2124-2133.
- 79. Lansky AJ, Schofer J, Tchetche D, et al. A prospective randomized evaluation of the TriGuardTM HDH embolic DEFLE CTion device during transcatheter aortic valve implantation: results f rom the DEFLECT III trial. Eur Heart J, 2015, 36(31): 2070-2078.
- 80. Nazif TM, Moses J, Sharma R, et al. Randomized evaluation of TriGuard 3 cerebral embolic protection after transcatheter aortic valve replacement: REFLECT II. JACC Cardiovasc Interv, 2021, 14(5): 515-527.
- 81. Rodés-Cabau J, Kahlert P, Neumann FJ, et al. Feasibility and exploratory efficacy evaluation of the Embrella Embolic Deflector system for the prevention of cerebral emboli in patients undergoing transcatheter aortic valve replacement: the PROTAVI-C pilot study. JACC Cardiovasc Interv, 2014, 7(10): 1146-1155.
- 82. Bagur R, Solo K, Alghofaili S, et al. Cerebral embolic protection devices during transcatheter aortic valve implantation: systematic review and meta-analysis. Stroke, 2017, 48(5): 1306-1315.
- 83. Mastoris I, Schoos MM, Dangas GD, et al. Stroke after transcatheter aortic valve replacement: incidence, risk factors, prognosis, and preventive strategies. Clin Cardiol, 2014, 37(12): 756-764.
- 84. Jimenez Diaz VA, Estevez Loureiro R, Baz Alonso JA, et al. Stroke prevention during and after transcatheter aortic valve implantation: from cerebral protection devices to antithrombotic management. Front Cardiovasc Med, 2022, 9: 958732.
- 85. Ten Berg JM, Brouwer J. Protamine in patients undergoing transcatheter aortic valve replacement: why not?. JACC Cardiovasc Interv, 2020, 13(12): 1481-1483.
- 86. Writing Committee Members, Otto CM, Nishimura RA, et al. 2020 ACC/AHA Guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol, 2021, 77(4): 450-500.
- 87. Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J, 2017, 38(36): 2739-2791.
- 88. Brouwer J, Nijenhuis VJ, Delewi R, et al. Aspirin with or without clopidogrel after transcatheter aortic-valve implantation. N Engl J Med, 2020, 383(15): 1447-1457.
- 89. Maes F, Stabile E, Ussia GP, et al. Meta-analysis comparing single versus dual antiplatelet therapy following transcatheter aortic valve implantation. Am J Cardiol, 2018, 122(2): 310-315.
- 90. Nijenhuis VJ, Brouwer J, Delewi R, et al. Anticoagulation with or without clopidogrel after transcatheter aortic-valve implantation. N Engl J Med, 2020, 382(18): 1696-1707.