1. |
叶畅畅, 吴亚菲. 口腔微生态失衡与妊娠期牙周病和不良妊娠结局的相关性研究进展. 中华口腔医学杂志, 2022, 57(6): 635-641.
|
2. |
Aldriwesh MG, Al-Mutairi AM, Alharbi AS, et al. Paediatric asthma and the microbiome: a systematic review. Microorganisms, 2023, 11(4): 939.
|
3. |
于龙刚, 姜彦. 鼻细菌微生物组与慢性鼻窦炎伴鼻息肉相关性的研究进展. 山东大学耳鼻喉眼学报, 2022, 36(3): 92-97.
|
4. |
Donald K, Finlay BB. Early-life interactions between the microbiota and immune system: impact on immune system development and atopic disease. Nat Rev Immunol, 2023, 23(11): 735-748.
|
5. |
El Saie A, Fu C, Grimm SL, et al. Metabolome and microbiome multi-omics integration from a murine lung inflammation model of bronchopulmonary dysplasia. Pediatr Res, 2022, 92(6): 1580-1589.
|
6. |
Reddel HK, Bacharier LB, Bateman ED, et al. Global Initiative for Asthma Strategy 2021: executive summary and rationale for key changes. Am J Respir Crit Care Med, 2022, 205(1): 17-35.
|
7. |
DeVries A, McCauley K, Fadrosh D, et al. Maternal prenatal immunity, neonatal trained immunity, and early airway microbiota shape childhood asthma development. Allergy, 2022, 77(12): 3617-3628.
|
8. |
Zhu Z, Camargo Jr CA, Raita Y, et al. Nasopharyngeal airway dual-transcriptome of infants with severe bronchiolitis and risk of childhood asthma: a multicenter prospective study. J Allergy Clin Immunol, 2022, 150(4): 806-816.
|
9. |
Losol P, Park HS, Song WJ, et al. Association of upper airway bacterial microbiota and asthma: systematic review. Asia Pac Allergy, 2022, 12(3): e32.
|
10. |
Bar K, Żebrowska P, Łaczmański Ł, et al. Airway bacterial biodiversity in exhaled breath condensates of asthmatic children-does it differ from the healthy ones?. J Clin Med, 2022, 11(22): 6774.
|
11. |
Headland SE, Dengler HS, Xu D, et al. Oncostatin M expression induced by bacterial triggers drives airway inflammatory and mucus secretion in severe asthma. Sci Transl Med, 2022, 14(627): eabf8188.
|
12. |
Troy NM, Strickland D, Serralha M, et al. Protection against severe infant lower respiratory tract infections by immune training: mechanistic studies. J Allergy Clin Immunol, 2022, 150(1): 93-103.
|
13. |
Valverde-Molina J, García-Marcos L. Microbiome and asthma: microbial dysbiosis and the origins, phenotypes, persistence, and severity of asthma. Nutrients, 2023, 15(3): 486.
|
14. |
Liu C, Makrinioti H, Saglani S, et al. Microbial dysbiosis and childhood asthma development: integrated role of the airway and gut microbiome, environmental exposures, and host metabolic and immune response. Front Immunol, 2022, 13: 1028209.
|
15. |
García-Serna AM, Martín-Orozco E, Hernández-Caselles T, et al. Prenatal and perinatal environmental influences shaping the neonatal immune system: a focus on asthma and allergy origins. Int J Environ Res Public Health, 2021, 18(8): 3962.
|
16. |
Barcik W, Boutin RCT, Sokolowska M, et al. The role of lung and gut microbiota in the pathology of asthma. Immunity, 2020, 52(2): 241-255.
|
17. |
Cobos-Uribe C, Rebuli ME. Understanding the functional role of the microbiome and metabolome in asthma. Curr Allergy Asthma Rep, 2023, 23(2): 67-76.
|
18. |
Zhou Y, Jackson D, Bacharier LB, et al. The upper-airway microbiota and loss of asthma control among asthmatic children. Nat Commun, 2019, 10(1): 5714.
|
19. |
Tamashiro R, Strange L, Schnackenberg K, et al. Stability of healthy subgingival microbiome across space and time. Sci Rep, 2021, 11(1): 23987.
|
20. |
Baehren C, Buedding E, Bellm A, et al. The relevance of the bacterial microbiome, archaeome and mycobiome in pediatric asthma and respiratory disorders. Cells, 2022, 11(8): 1287.
|
21. |
van Staa TP, Palin V, Li Y, et al. The effectiveness of frequent antibiotic use in reducing the risk of infection-related hospital admissions: results from two large population-based cohorts. BMC Med, 2020, 18(1): 40.
|
22. |
Zhao H, Zhou J, Lu H, et al. Azithromycin pretreatment exacerbates atopic dermatitis in trimellitic anhydride-induced model mice accompanied by correlated changes in the gut microbiota and serum cytokines. Int Immunopharmacol, 2022, 102: 108388.
|
23. |
Harmon CP, Deng D, Breslin PAS. Bitter taste receptors (T2Rs) are sentinels that coordinate metabolic and immunological defense responses. Curr Opin Physiol, 2021, 20: 70-76.
|