1. |
Levi N, Papismadov N, Solomonov I, et al. The ECM path of senescence in aging: components and modifiers. FEBS J, 2020, 287(13): 2636-2646.
|
2. |
Marozzi M, Parnigoni A, Negri A, et al. Inflammation, extracellular matrix remodeling, and proteostasis in tumor microenvironment. Int J Mol Sci, 2021, 22(15): 8102.
|
3. |
Dyussenbayev A. The main periods of human life. Glob J Hum Soc Sci, 2017, 17(7): 32-36.
|
4. |
Guo T, Kouvonen P, Koh CC, et al. Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps. Nat Med, 2015, 21(4): 407-413.
|
5. |
Que SKT, Zwald FO, Schmults CD. Cutaneous squamous cell carcinoma: incidence, risk factors, diagnosis, and staging. J Am Acad Dermatol, 2018, 78(2): 237-247.
|
6. |
Franco AC, Aveleira C, Cavadas C. Skin senescence: mechanisms and impact on whole-body aging. Trends Mol Med, 2022, 28(2): 97-109.
|
7. |
Waller JM, Maibach HI. Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity. Skin Res Technol, 2005, 11(4): 221-235.
|
8. |
Sauermann K, Jaspers S, Koop U, et al. Topically applied vitamin C increases the density of dermal papillae in aged human skin. BMC Dermatol, 2004, 4(1): 13.
|
9. |
Tobin DJ. Introduction to skin aging. J Tissue Viability, 2017, 26(1): 37-46.
|
10. |
Stratigos AJ, Garbe C, Dessinioti C, et al. European interdisciplinary guideline on invasive squamous cell carcinoma of the skin: Part 1. epidemiology, diagnostics and prevention. Eur J Cancer, 2020, 128: 60-82.
|
11. |
Baghban R, Roshangar L, Jahanban-Esfahlan R, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal, 2020, 18(1): 59.
|
12. |
Huang J, Zhang L, Wan D, et al. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther, 2021, 6(1): 153.
|
13. |
Hu SM, Li F, Yu HM, et al. The mimecan gene expressed in human pituitary and regulated by pituitary transcription factor-1 as a marker for diagnosing pituitary tumors. J Clin Endocrinol Metab, 2005, 90(12): 6657-6664.
|
14. |
Fasehee H, Fakhraee M, Davoudi S, et al. Cancer biomarkers in atherosclerotic plaque: evidenced from structural and proteomic analyses. Biochem Biophys Res Commun, 2019, 509(3): 687-693.
|
15. |
Gopinath P, Natarajan A, Sathyanarayanan A, et al. The multifaceted role of matricellular proteins in health and cancer, as biomarkers and therapeutic targets. Gene, 2022, 815: 146137.
|
16. |
Moriggi M, Giussani M, Torretta E, et al. ECM remodeling in breast cancer with different grade: contribution of 2D-DIGE proteomics. Proteomics, 2018, 18(24): e1800278.
|
17. |
Wang Y, Wang L, Wen X, et al. NF-κB signaling in skin aging. Mech Ageing Dev, 2019, 184: 111160.
|
18. |
Chiavarina B, Ronca R, Otaka Y, et al. Fibroblast-derived prolargin is a tumor suppressor in hepatocellular carcinoma. Oncogene, 2022, 41(10): 1410-1420.
|
19. |
Gambichler T, Elfering J, Meyer T, et al. Protein expression of prognostic genes in primary melanoma and benign nevi. J Cancer Res Clin Oncol, 2022, 148(10): 2673-2680.
|
20. |
Long R, Liu Z, Li J, et al. COL6A6 interacted with P4HA3 to suppress the growth and metastasis of pituitary adenoma via blocking PI3K-Akt pathway. Aging (Albany NY), 2019, 11(20): 8845-8859.
|
21. |
Qiao H, Feng Y, Tang H. COL6A6 inhibits the proliferation and metastasis of non-small cell lung cancer through the JAK signalling pathway. Transl Cancer Res, 2021, 10(10): 4514-4522.
|
22. |
Ganapathi MK, Jones WD, Sehouli J, et al. Expression profile of COL2A1 and the pseudogene SLC6A10P predicts tumor recurrence in high-grade serous ovarian cancer. Int J Cancer, 2016, 138(3): 679-688.
|
23. |
Xie W, Huang P, Wu B, et al. Clinical significance of LOXL4 expression and features of LOXL4-associated protein-protein interaction network in esophageal squamous cell carcinoma. Amino Acids, 2019, 51(5): 813-828.
|
24. |
de Serres F, Blanco I. Role of alpha-1 antitrypsin in human health and disease. J Intern Med, 2014, 276(4): 311-335.
|
25. |
McElvaney OF, Fraughen DD, McElvaney OJ, et al. Alpha-1 antitrypsin deficiency: current therapy and emerging targets. Expert Rev Respir Med, 2023, 17(3): 191-202.
|
26. |
Chen D, Yoo BK, Santhekadur PK, et al. Insulin-like growth factor-binding protein-7 functions as a potential tumor suppressor in hepatocellular carcinoma. Clin Cancer Res, 2011, 17(21): 6693-6701.
|
27. |
Pen A, Durocher Y, Slinn J, et al. Insulin-like growth factor binding protein 7 exhibits tumor suppressive and vessel stabilization properties in U87MG and T98G glioblastoma cell lines. Cancer Biol Ther, 2011, 12(7): 634-646.
|
28. |
Leto G, Tumminello FM, Crescimanno M, et al. Cathepsin D expression levels in nongynecological solid tumors: clinical and therapeutic implications. Clin Exp Metastasis, 2004, 21(2): 91-106.
|
29. |
Tsukuba T, Okamoto K, Yasuda Y, et al. New functional aspects of cathepsin D and cathepsin E. Mol Cells, 2000, 10(6): 601-611.
|
30. |
Dian D, Heublein S, Wiest I, et al. Significance of the tumor protease cathepsin D for the biology of breast cancer. Histol Histopathol, 2014, 29(4): 433-438.
|
31. |
Dong Y, Zhong J, Dong L. The role of decorin in autoimmune and inflammatory diseases. J Immunol Res, 2022, 2022: 1283383.
|
32. |
Ji C, Liu H, Xiang M, et al. Deregulation of decorin and FHL1 are associated with esophageal squamous cell carcinoma progression and poor prognosis. Int J Clin Exp Med, 2015, 8(11): 20965-20970.
|
33. |
Kasamatsu A, Uzawa K, Minakawa Y, et al. Decorin in human oral cancer: a promising predictive biomarker of S-1 neoadjuvant chemosensitivity. Biochem Biophys Res Commun, 2015, 457(1): 71-76.
|