1. |
Moudgil A, Hou K, Li T, et al. Biocompatible solid-state ion-sensitive organic electrochemical transistor for physiological multi-ions sensing. Adv Mater Technol, 2023, 8(18): 2300605.
|
2. |
Li Y, Cui B, Zhang S, et al. Ion-selective organic electrochemical transistors: recent progress and challenges. Small, 2022, 18(19): e2107413.
|
3. |
Wang Z, Shin J, Park JH, et al. Engineering materials for electrochemical sweat sensing. Adv Funct Mater, 2021, 31(12): 2008130.
|
4. |
Gucyetmez B, Sarikaya ZT, Tuzuner F. Elevated strong ion gap: a predictor of the initiation of continuous renal replacement therapy in acute kidney injury. Am J Med Sci, 2024, 367(2): 112-118.
|
5. |
Yang Y, Lv TR, Zhang WH, et al. Tailored polypyrrole nanofibers as ion-to-electron transduction membranes for wearable K+ sensors. Small, 2024, 20(26): e2311802.
|
6. |
Hjort RG, Soares RRA, Li J, et al. Hydrophobic laser-induced graphene potentiometric ion-selective electrodes for nitrate sensing. Mikrochim Acta, 2022, 189(3): 122.
|
7. |
Ruslan N, Lim DCK, Alang Ahmad SA, et al. Ultrasensitive electrochemical detection of metal ions using dicarboethoxycalixarene-based sensor. J Electroanal Chem, 2017, 799: 497-504.
|
8. |
Clement N, Nishiguchi K, Dufreche JF, et al. A silicon nanowire ion-sensitive field-effect-transistor with elementary charge sensitivity. Appl Phys Lett, 2011, 98(1): 014104.
|
9. |
Park SC, Jeong HJ, Heo M, et al. Carbon nanotube-based ion-sensitive field-effect transistors with an on-chip reference electrode toward wearable sodium sensing. ACS Appl Electron Mater, 2021, 3(6): 2580-2588.
|
10. |
Chae MS, Park JH, Son HW, et al. IGZO-based electrolyte-gated field-effect transistor for in situ biological sensing platform. Sens Actuators B Chem, 2018, 262: 876-883.
|
11. |
Mariani F, Gualandi I, Tessarolo M, et al. PEDOT: dye-based, flexible organic electrochemical transistor for highly sensitive pH monitoring. ACS Appl Mater Interfaces, 2018, 10(26): 22474-22484.
|
12. |
Clua Estivill M, Ait Yazza A, Blondeau P, et al. Ion-selective organic electrochemical transistors for the determination of potassium in clinical samples. Sens Actuators B Chem, 2024, 401: 135027.
|
13. |
Strand E J, Bihar E, Gleason S M, et al. Printed organic electrochemical transistors for detecting nutrients in whole plant sap. Adv Electron Mater, 2022, 8(4): 2100853.
|
14. |
Huang W, Chen J, Yao Y, et al. Vertical organic electrochemical transistors for complementary circuits. Nature, 2023, 613(7944): 496-502.
|
15. |
Wei W, Xiao K, Tao M, et al. A novel organic electrochemical transistor-based platform for monitoring the senescent green vegetative phase of haematococcus pluvialis cells. Sensors (Basel), 2017, 17(9): 1997.
|
16. |
Koutsouras DA, Lieberth K, Torricelli F, et al. Selective ion detection with integrated organic electrochemical transistors. Adv Mater Technol, 2021, 6(12): 2100591.
|
17. |
Liu H, Yang A, Song J, et al. Ultrafast, sensitive, and portable detection of COVID-19 IgG using flexible organic electrochemical transistors. Sci Adv, 2021, 7(38): eabg8387.
|
18. |
Emaminejad S, Gao W, Wu E, et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc Natl Acad Sci U S A, 2017, 114(18): 4625-4630.
|
19. |
Bai J, Liu D, Tian X, et al. Coin-sized, fully integrated, and minimally invasive continuous glucose monitoring system based on organic electrochemical transistors. Sci Adv, 2024, 10(16): eadl1856.
|
20. |
Ouyang B, Song Y, Cai W, et al. RF powered flexible printed ion-sensitive organic field effect transistor chip with design-to-manufacturing automation for mobile bio-sensing//Institute of Electrical and Electronics Engineers. 2021 IEEE International Electron Devices Meeting (IEDM). San Francisco: Institute of Electrical and Electronics Engineers, 2021: 16.3.1-16.3.4.
|