1. |
赵宇亮, 张凌, 付平. 提高肾脏病整体预后工作组急性肾损伤临床实践指南热点解读. 中华内科杂志, 2012, 51(12): 935-939.
|
2. |
赵宇亮, 张凌, 付平. 枸橼酸抗凝在肾脏替代治疗中的新进展. 中华内科杂志, 2012, 51(7): 571-573.
|
3. |
Zhang L, Liao Y, Xiang J, et al. Simplified regional citrate anticoagulation using a calcium-containing replacement solution for continuous venovenous hemofiltration. J Artif Organs, 2013, 16(2): 185-192.
|
4. |
Rhee H, Berenger B, Mehta RL, et al. Regional citrate anticoagulation for continuous kidney replacement therapy with calcium-containing solutions: a cohort study. Am J Kidney Dis, 2021, 78(4): 550-559.e1.
|
5. |
Wei T, Tang X, Zhang L, et al. Calcium-containing versus calcium-free replacement solution in regional citrate anticoagulation for continuous renal replacement therapy: a randomized controlled trial. Chin Med J (Engl), 2022, 135(20): 2478-2487.
|
6. |
Bellomo R, Cass A, Cole L, et al. The relationship between hypophosphataemia and outcomes during low-intensity and high-intensity continuous renal replacement therapy. Crit Care Resusc, 2014, 16(1): 34-41.
|
7. |
Christopoulou EC, Filippatos TD, Megapanou E, et al. Phosphate imbalance in patients with heart failure. Heart Fail Rev, 2017, 22(3): 349-356.
|
8. |
Oikonomidis IL, Rees P, Hernando Sanz J, et al. Hypophosphatemia in intensive care unit canine patients: occurrence and association with mortality and duration of hospitalization. Vet Clin Pathol, 2025: 2.
|
9. |
Song YH, Seo EH, Yoo YS, et al. Phosphate supplementation for hypophosphatemia during continuous renal replacement therapy in adults. Ren Fail, 2019, 41(1): 72-79.
|
10. |
Thompson Bastin ML, Adams PM, Nerusu S, et al. Association of phosphate containing solutions with incident hypophosphatemia in critically ill patients requiring continuous renal replacement therapy. Blood Purif, 2022, 51(2): 122-129.
|
11. |
Thompson Bastin ML, Stromberg AJ, Nerusu SN, et al. Association of phosphate-containing versus phosphate-free solutions on ventilator days in patients requiring continuous kidney replacement therapy. Clin J Am Soc Nephrol, 2022, 17(5): 634-642.
|
12. |
Abe M, Kalantar-Zadeh K. Haemodialysis-induced hypoglycaemia and glycaemic disarrays. Nat Rev Nephrol, 2015, 11(5): 302-313.
|
13. |
Padmanabhan A, Velayudham B, Vijaykumar N, et al. Evaluation of glycemic status during the days of hemodialysis using dialysis solutions with and without glucose. Saudi J Kidney Dis Transpl, 2018, 29(5): 1021-1027.
|
14. |
Cui L, Meng Y, Xu D, et al. Analysis of the metabolic properties of maintenance hemodialysis patients with glucose-added dialysis based on high performance liquid chromatography quadrupole time-of-flight mass spectrometry. Ther Clin Risk Manag, 2013, 9: 417-425.
|
15. |
Raimann JG, Kruse A, Thijssen S, et al. Fatigue in hemodialysis patients with and without diabetes: results from a randomized controlled trial of two glucose-containing dialysates. Diabetes Care, 2010, 33(9): e121.
|
16. |
蹇丽君, 张凌, 关明镜, 等. 含糖透析液对合并糖尿病的维持性血液透析患者血糖、血压和心率变异性的影响. 西部医学, 2024, 36(5): 776-780.
|
17. |
李莉, 丁嘉祥, 张东亮, 等. 含糖透析液减少维持性血液透析患者低血压发生. 临床和实验医学杂志, 2011, 10(19): 1511-1512.
|
18. |
Rodríguez-Espinosa D, Cuadrado-Payán E, Rico N, et al. Comparative effects of acetate- and citrate-based dialysates on dialysis dose and protein-bound uremic toxins in hemodiafiltration patients: exploring the impact of calcium and magnesium concentrations. Toxins (Basel), 2024, 16(10): 426.
|
19. |
de Sequera P, Pérez-García R, Molina M, et al. Advantages of the use of citrate over acetate as a stabilizer in hemodialysis fluid: a randomized ABC-treat study. Nefrologia (Engl Ed), 2022, 42(3): 327-337.
|
20. |
Akiyama KI, Moriyama T, Hanafusa N, et al. Citric acid-based bicarbonate dialysate attenuates aortic arch calcification in maintenance hemodialysis patients: a retrospective observational study. J Nephrol, 2023, 36(2): 367-376.
|
21. |
Broseta JJ, Roca M, Rodríguez-Espinosa D, et al. Impact of acetate versus citrate dialysates on intermediary metabolism-a targeted metabolomics approach. Int J Mol Sci, 2022, 23(19): 11693.
|
22. |
王越, 李梦婷, 谢庆磊, 等. 不同缓冲剂碳酸氢盐透析液在无肝素血液透析患者中的应用研究. 临床肾脏病杂志, 2023, 23(7): 536-540.
|
23. |
Ureña-Torres P, Bieber B, Guebre-Egziabher F, et al. Citric acid-containing dialysate and survival rate in the dialysis outcomes and practice patterns study. Kidney360, 2021, 2(4): 666-673.
|
24. |
Neri L, Bellocchio F, Kircelli F, et al. Long-term mortality risk associated with citric acid- and acetic acid-based bicarbonate haemodialysis: a historical cohort propensity score-matched study in a large, multicentre, population-based study. Nephrol Dial Transplant, 2020, 35(7): 1237-1244.
|
25. |
Zhao Y, Li Z, Zhang L, et al. Citrate versus heparin lock for hemodialysis catheters: a systematic review and meta-analysis of randomized controlled trials. Am J Kidney Dis, 2014, 63(3): 479-490.
|
26. |
Mai H, Zhao Y, Salerno S, et al. Citrate versus heparin lock for prevention of hemodialysis catheter-related complications: updated systematic review and meta-analysis of randomized controlled trials. Int Urol Nephrol, 2019, 51(6): 1019-1033.
|
27. |
赵宇亮, 杨济桥, 张凌, 等. 枸橼酸和肝素封管液预防血液透析长期留置导管相关感染的 Meta 分析. 中华肾脏病杂志, 2013, 29(8): 574-582.
|
28. |
Jiménez Hernández M, Soriano A, Filella X, et al. Impact of locking solutions on conditioning biofilm formation in tunnelled haemodialysis catheters and inflammatory response activation. J Vasc Access, 2021, 22(3): 370-379.
|
29. |
Nguyen T, Camins BC, Butler DA. Taurolidine and heparin as catheter lock solution for central venous catheters in hemodialysis. Am J Ther, 2024, 31(4): e398-e409.
|
30. |
Agarwal AK, Roy-Chaudhury P, Mounts P, et al. Taurolidine/heparin lock solution and catheter-related bloodstream infection in hemodialysis: a randomized, double-blind, active-control, phase 3 study. Clin J Am Soc Nephrol, 2023, 18(11): 1446-1455.
|
31. |
Wang Y, Sun X. Reevaluation of lock solutions for central venous catheters in hemodialysis: a narrative review. Ren Fail, 2022, 44(1): 1501-1518.
|
32. |
Cho Y, Johnson DW, Craig JC, et al. Biocompatible dialysis fluids for peritoneal dialysis. Cochrane Database Syst Rev, 2014(3): CD007554.
|
33. |
Hashimoto K, Kamijo Y. Current progress in peritoneal dialysis: a narrative review of progress in peritoneal dialysis fluid. Life (Basel), 2025, 15(2): 279.
|
34. |
Tjiong HL, Swart R, van den Berg JW, et al. Amino acid-based peritoneal dialysis solutions for malnutrition: new perspectives. Perit Dial Int, 2009, 29(4): 384-393.
|
35. |
Asola M, Virtanen K, Någren K, et al. Amino-acid-based peritoneal dialysis solution improves amino-acid transport into skeletal muscle. Kidney Int Suppl, 2008(108): S131-S136.
|
36. |
Bender TO, Witowski J, Aufricht C, et al. Biocompatibility of a bicarbonate-buffered amino-acid-based solution for peritoneal dialysis. Pediatr Nephrol, 2008, 23(9): 1537-1543.
|
37. |
Chang JM, Chen HC, Hwang SJ, et al. Does amino acid-based peritoneal dialysate change homocysteine metabolism in continuous ambulatory peritoneal dialysis patients?. Perit Dial Int, 2003, 23(Suppl 2): S48-S51.
|
38. |
Iyasere O, Nagar R, Jesus-Silva JA, et al. The impact of amino acid dialysate on anthropometric measures in adult patients on peritoneal dialysis: a systematic review and meta-analysis. Perit Dial Int, 2022, 42(3): 314-323.
|