1. |
Qin L, Yang S, Zhao C, et al. Prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections. Bone Res, 2024, 12(1): 28.
|
2. |
杨星, 周明旺, 王晓萍, 等. 新型抗菌材料治疗感染性骨缺损的机制与临床应用研究进展. 中华医院感染学杂志, 2025(19): 3031-3035.
|
3. |
Malat TA, Glombitza M, Dahmen J, et al. The use of bioactive glass S53P4 as bone graft substitute in the treatment of chronic osteomyelitis and infected non-unions - a retrospective study of 50 patients. Z Orthop Unfall, 2018, 156(2): 152-159.
|
4. |
Wang Q, Chen C, Liu W, et al. Levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold for the treatment of chronic osteomyelitis with bone defects. Sci Rep, 2017, 7: 41808.
|
5. |
祝勇刚, 张大伟, 赵广跃, 等. 抗生素骨水泥联合自体骨移植及环形外固定架修复骨髓炎后胫骨缺损. 中国组织工程研究, 2015(25): 3942-3946.
|
6. |
Liu Y, Li X, Liang A. Current research progress of local drug delivery systems based on biodegradable polymers in treating chronic osteomyelitis. Front Bioeng Biotechnol, 2022, 10: 1042128.
|
7. |
Perez JR, Kouroupis D, Li DJ, et al. Tissue engineering and cell-based therapies for fractures and bone defects. Front Bioeng Biotechnol, 2018, 6: 105.
|
8. |
Jiang C, Zhu G, Liu Q. Current application and future perspectives of antimicrobial degradable bone substitutes for chronic osteomyelitis. Front Bioeng Biotechnol, 2024, 12: 1375266.
|
9. |
梁枭, 吴锦秋, 袁凌伟, 等. 可降解生物材料应用于修复感染性骨缺损的研究进展. 生物骨科材料与临床研究, 2024, 21(5): 71-76.
|
10. |
Yuan X, Zhu W, Yang Z, et al. Recent advances in 3D printing of smart scaffolds for bone tissue engineering and regeneration. Adv Mater, 2024, 36(34): e2403641.
|
11. |
Yazdanpanah Z, Johnston JD, Cooper DML, et al. 3D bioprinted scaffolds for bone tissue engineering: state-of-the-art and emerging technologies. Front Bioeng Biotechnol, 2022, 10: 824156.
|
12. |
Ciocîlteu MV, Mocanu AG, Biță A, et al. Development of hybrid implantable local release systems based on PLGA nanoparticles with applications in bone diseases. Polymers (Basel), 2024, 16(21): 3064.
|
13. |
邵云菲, 王卉, 朱怡然, 等. 基于丝素蛋白材料构建骨组织修复支架的三维多孔结构体系的研究进展. 合成生物学, 2022, 3(4): 795-809.
|
14. |
Krishnan AG, Biswas R, Menon D, Nair MB. Biodegradable nanocomposite fibrous scaffold mediated local delivery of vancomycin for the treatment of MRSA infected experimental osteomyelitis. Biomater Sci. 2020;8(9): 2653-2665.
|
15. |
Hassani Besheli N, Mottaghitalab F, Eslami M, et al. Sustainable release of vancomycin from silk fibroin nanoparticles for treating severe bone infection in rat tibia osteomyelitis model. ACS Appl Mater Interfaces, 2017, 9(6): 5128-5138.
|
16. |
Donos N, Akcali A, Padhye N, et al. Bone regeneration in implant dentistry: which are the factors affecting the clinical outcome?. Periodontol 2000, 2023, 93(1): 26-55.
|
17. |
Lu M, Liao J, Dong J, et al. An effective treatment of experimental osteomyelitis using the antimicrobial titanium/silver-containing nHP66 (nano-hydroxyapatite/polyamide-66) nanoscaffold biomaterials. Sci Rep, 2016, 6: 39174.
|
18. |
Zhu C, He M, Sun D, et al. 3D-printed multifunctional polyetheretherketone bone scaffold for multimodal treatment of osteosarcoma and osteomyelitis. ACS Appl Mater Interfaces, 2021, 13(40): 47327-47340.
|
19. |
Pajarinen J, Lin T, Gibon E, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials, 2019, 196: 80-89.
|
20. |
Roy S, Wang S, Ullah Z, et al. Defect-engineered biomimetic piezoelectric nanocomposites with enhanced ROS production, macrophage re-polarization, and Ca2+ channel activation for therapy of MRSA-infected wounds and osteomyelitis. Small, 2025, 21(10): e2411906.
|
21. |
Yu H, VandeVord PJ, Mao L, et al. Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Biomaterials, 2009, 30(4): 508-517.
|
22. |
姜壮, 王华松, 丰瑞兵, 等. 生长因子在骨折愈合过程中的作用及其机制的研究进展. 华南国防医学杂志, 2020, 34(11): 823-827.
|
23. |
Chen X, Sun Z, Peng X, et al. Graphene oxide/black phosphorus functionalized collagen scaffolds with enhanced near-infrared controlled in situ biomineralization for promoting infectious bone defect repair through PI3K/Akt pathway. ACS Appl Mater Interfaces, 2024, 16(38): 50369-50388.
|
24. |
Zhou X, Qian Y, Chen L, et al. Flowerbed-inspired biomimetic scaffold with rapid internal tissue infiltration and vascularization capacity for bone repair. ACS Nano, 2023, 17(5): 5140-5156.
|
25. |
郭政, 田征. 3D 打印技术在四肢长骨骨肿瘤切除后大节段骨缺损的重建优势. 现代医学与健康研究(电子版), 2024, 8(2): 109-114.
|
26. |
田帅帅, 魏佳庆, 任晓旋, 等. 桡骨远端骨巨细胞瘤整块切除术后腕关节重建方法. 国际骨科学杂志, 2023, 44(6): 349-352.
|
27. |
Chen Z, Xing Y, Li X, et al. 3D-printed titanium porous prosthesis combined with the Masquelet technique for the management of large femoral bone defect caused by osteomyelitis. BMC Musculoskelet Disord, 2024, 25(1): 474.
|
28. |
Liu B, Wang L, Li X, et al. Applying 3D-printed prostheses to reconstruct critical-sized bone defects of tibial diaphysis (> 10 cm) caused by osteomyelitis and aseptic non-union. J Orthop Surg Res, 2024, 19(1): 418.
|
29. |
胡庆柳. 磷酸氢钙/胶原复合人工骨与羟基磷灰石/胶原复合人工骨修复大段骨缺损的比较. 中国组织工程研究与临床康复, 2010, 14(47): 8759-8763.
|
30. |
黄晓夏, 王江华, 李璐遥, 等. 聚富马酸丙二醇酯复合材料应用于感染性骨缺损的研究进展. 中华骨与关节外科杂志, 2024, 17(11): 1042-1047.
|
31. |
Romanò CL, Logoluso N, Meani E, et al. A comparative study of the use of bioactive glass S53P4 and antibiotic-loaded calcium-based bone substitutes in the treatment of chronic osteomyelitis: a retrospective comparative study. Bone Joint J, 2014, 96-B(6): 845-850.
|
32. |
Wang L, Yang Q, Huo M, et al. Engineering single-atomic iron-catalyst-integrated 3d-printed bioscaffolds for osteosarcoma destruction with antibacterial and bone defect regeneration bioactivity. Adv Mater, 2021, 33(31): e2100150.
|
33. |
Yang F, Shi Z, Hu Y, et al. Nanohybrid hydrogel with dual functions: controlled low-temperature photothermal antibacterial activity and promoted regeneration for treating MRSA-infected bone defects. Adv Healthc Mater, 2025, 14(11): e2500092.
|
34. |
孔春茹, 唐晓铎, 常蓓. Mg-多酚复合功能双网络凝胶支架促进感染性骨缺损再生的研究//中华口腔医学会口腔生物医学专业委员会, 中华口腔医学会口腔病理学专业委员会. 中华口腔医学会口腔生物医学专业委员会第 14 次口腔生物医学学术年会中华口腔医学会口腔病理学专业委员会第 18 次口腔病理学术年会论文集. 长春: 吉林大学口腔医院, 2024: 206.
|
35. |
Zhang P, Qin J, Zhang B, et al. Gentamicin-loaded silk/nanosilver composite scaffolds for MRSA-induced chronic osteomyelitis. R Soc Open Sci, 2019, 6(5): 182102.
|
36. |
Mulazzi M, Campodoni E, Bassi G, et al. Medicated hydroxyapatite/collagen hybrid scaffolds for bone regeneration and local antimicrobial therapy to prevent bone infections. Pharmaceutics, 2021, 13(7): 1090.
|