1. |
Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science, 1987, 238(4826): 491-497.
|
2. |
Geissler U, Hempel U, Wolf C, et al. Collagen type I-coating of Ti6Al4V promotes adhesion of osteoblasts. J Biomed Mater Res, 2000, 51(4): 752-760.
|
3. |
Roehlecke C, Witt M, Kasper M, et al. Synergistic effect of titanium alloy and collagen type I on cell adhesion, proliferation and differentiation of osteoblast-like cells. Cells Tissues Organs, 2001, 168(3): 178-187.
|
4. |
Rammelt S, Schulze E, Bernhardt R, et al. Coating of titanium implants with type-I collagen. J Orthop Res, 2004, 22(5): 1025-1034.
|
5. |
Rammelt S, Heck C, Bernhardt R, et al. In vivo effects of coating loaded and unloaded Ti implants with collagen, chondroitin sulfate, and hydroxyapatite in the sheep tibia. J Orthop Res, 2007, 25(8): 1052-1061.
|
6. |
Morra M, Cassinelli C, Cascardo G, et al. Surface engineering of titanium by collagen immobilization. Surface characterization and in vitro and in vivo studies. Biomaterials, 2003, 24(25): 4639-4654.
|
7. |
Morra M, Cassinelli C, Fini M, et al. Enhanced osseointegration by biochemical surface modification: Covalent linking of collagen I to intervertebral metal disk surface. Eur Cell Mater, 2005, 10(Suppl 3): 6.
|
8. |
Morra M, Cassinelli C, Meda L, et al. Surface analysis and effects on interfacial bone microhardness of collagen-coated titanium implants: a rabbit model. Int J Oral Maxillofac Implants, 2005, 20(1): 23-30.
|
9. |
Mueller CK, Thorwarth M, Schmidt M, et al. Comparative analysis of osseointegration of titanium implants with acid-etched surfaces and different biomolecular coatings. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011, 112(6): 726-736.
|
10. |
Sverzut AT, Crippa GE, Morra M, et al. Effects of type I collagen coating on titanium osseointegration: histomorphometric, cellular and molecular analyses. Biomed Mater, 2012, 7(3): 035007.
|
11. |
Svehla M, Morberg P, Bruce W, et al. No effect of a type I collagen gel coating in uncemented implant fixation. J Biomed Mater Res B Appl Biomater, 2005, 74(1): 423-428.
|
12. |
Du C, Cui FZ, Zhu XD, et al. Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res, 1999, 44(4): 407-415.
|
13. |
Cui FZ, Du C, Su XW, et al. Biodegradation of a nano-hydroxyapatite/collagen composite by peritoneal monocyte-macrophages. Cells Mater 1996, 6(1-3): 31-44.
|
14. |
Salasznyk RM, Williams WA, Boskey A, et al. Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. J Biomed Biotechnol, 2004, 2004(1): 24-34.
|
15. |
Rammelt S, Schulze E, Witt M, et al. Collagen type I increases bone remodelling around hydroxyapatite implants in the rat tibia. Cells Tissues Organs, 2004, 178(3): 146-157.
|
16. |
Bierbaum S, Douglas T, Hanke T, et al. Collageneous matrix coatings on titanium implants modified with decorin and chondroitin sulfate: characterization and influence on osteoblastic cells. J Biomed Mater Res A, 2006, 77(3): 551-562.
|
17. |
Wollenweber M, Domaschke H, Hanke T, et al. Mimicked bioartificial matrix containing chondroitin sulphate on a textile scaffold of poly (3-hydroxybutyrate) alters the differentiation of adult human mesenchymal stem cells. Tissue Eng, 2006, 12(2): 345-359.
|
18. |
Rammelt S, Illert T, Bierbaum S, et al. Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials, 2006, 27(32): 5561-5571.
|
19. |
Stadlinger B, Bierbaum S, Grimmer S, et al. Increased bone formation around coated implants. J Clin Periodontol, 2009, 36(8): 698-704.
|
20. |
Schneiders W, Reinstorf A, Ruhnow M, et al. Effect of chondroitin sulphate on material properties and bone remodelling around hydroxyapatite/collagen composites. J Biomed Mater Res A, 2008, 85(3): 638-645.
|
21. |
Schneiders W, Reinstorf A, Biewener A, et al. In vivo effects of modification of hydroxyapatite/collagen composites with and without chondroitin sulphate on bone remodeling in the sheep tibia. J Orthop Res, 2009, 27(1): 15-21.
|
22. |
Schneiders W, Rentsch C, Rehberg S, et al. Effect of chondroitin sulfate on osteogenetic differentiation of human mesenchymal stem cells. Materials Science and Engineering C, 2012, 32(7): 1926-1930.
|
23. |
Dee KC, Anderson TT, Bizios R. Osteoblast population migration characteristics on substrates modified with immobilized adhesive peptides. Biomaterials, 1999, 20(3): 221-227.
|
24. |
Rezania A, Thomas CH, Branger AB, et al. The detachment strength and morphology of bone cells contacting materials modified with a peptide sequence found within bone sialoprotein. J Biomed Mater Res, 1997, 37(1): 9-19.
|
25. |
Zreiqat H, Akin FA, Howlett CR, et al. Differentiation of human bone-derived cells grown on GRGDSP-peptide bound titanium surfaces. J Biomed Mater Res A, 2003, 64(1): 105-113.
|
26. |
Park JW, Kurashima K, Tustusmi Y, et al. Bone healing of commercial oral implants with RGD immobilization through electrodeposited poly (ethylene glycol) in rabbit cancellous bone. Acta Biomater, 2011, 7(8): 3222-3229.
|
27. |
Park SY, Kim HS, Kim JH, et al. Effects of anodized titanium implant coated with RGD peptides via chemical fixation on osseointegration and bone regeneration. Tissue Engineering and Regenerative Medicine, 2012, 9(4): 194-202.
|
28. |
Schneiders W, Reinstorf A, Pompe W, et al. Effect of modification of hydroxyapatite/collagen composites with sodium citrate, phosphoserine, phosphoserine/RGD-peptide and calcium carbonate on bone remodelling. Bone, 2007, 40(4): 1048-1059.
|
29. |
Hennessy KM, Clem WC, Phipps MC, et al. The effect of RGD peptides on osseointegration of hydroxyapatite biomaterials. Biomaterials, 2008, 29(21): 3075-3083.
|
30. |
Bitschnau A, Alt V, Böhner F, et al. Comparison of new bone formation, implant integration, and biocompatibility between RGD-hydroxyapatite and pure hydroxyapatite coating for cementless joint prostheses—an experimental study in rabbits. J Biomed Mater Res B Appl Biomater, 2009, 88(1): 66-74.
|
31. |
Sasaki T, Watanabe C. Stimulation of osteoinduction in bone wound healing by high-molecular hyaluronic acid. Bone, 1995, 16(1): 9-15.
|
32. |
Morra M, Cassinelli C, Cascardo G, et al. Covalently-linked hyaluronan promotes bone formation around Ti implants in a rabbit model. J Orthop Res, 2009, 27(5): 657-663.
|
33. |
Li XJ, Luo QJ, Huang Y, et al. The responses of preosteoblasts to collagen/hyaluronic acid polyelectrolyte multilayer coating on titanium. Polym Adv Technol, 2012, 23(4): 756-764.
|
34. |
Stadlinger B, Hintze V, Bierbaum S, et al. Biological functionalization of dental implants with collagen and glycosaminoglycans—A comparative study. J Biomed Mater Res B Appl Biomater, 2011. [Epub ahead of print].
|
35. |
Petrie TA, Reyes CD, Burns KL, et al. Simple application of fibronectin-mimetic coating enhances osseointegration of titanium implants. J Cell Mol Med, 2009, 13(8B): 2602-2612.
|
36. |
Schönmeyr BH, Wong AK, Li S, et al. Treatment of hydroxyapatite scaffolds with fibronectin and fetal calf serum increases osteoblast adhesion and proliferation in vitro. Plast Reconstr Surg, 2008, 121(3): 751-762.
|
37. |
王浩, 张里程, 石涛, 等. 胶原-羟基磷灰石-硫酸软骨素-骨形态发生蛋白骨修复材料的性质评估. 北京大学学报: 医学版, 2011, 43(5): 730-734.
|
38. |
Kang SW, Kim JS, Park KS, et al. Surface modification with fibrin/hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration. Bone, 2011, 48(2): 298-306.
|
39. |
Huang Y, Luo QJ, Li XD, et al. Fabrication and in vitro evaluation of the collagen/hyaluronic acid PEM coating crosslinked with functionalized RGD peptide on titanium. Acta Biomater, 2012, 8(2): 866-877.
|