1. |
Mustoe TA, Cooter RD, Gold MH, et al. International clinical recommendations on scar management. Plast Reconstr Surg, 2002, 110(2):560-571.
|
2. |
Yagmur C, Akaishi S, Ogawa R, et al. Mechanical receptor-related mechanisms in scar management:a review and hypothesis. Plast Reconstr Surg, 2010, 126(2):426-434.
|
3. |
Derderian CA, Bastidas N, Lerman OZ, et al. Mechanical strain alters gene expression in an in vitro model of hypertrophic scarring. Ann Plast Surg, 2005, 55(1):69-75.
|
4. |
Ogawa R. Keloid and hypertrophic scarring may result from a mechanoreceptor or mechanosensitive nociceptor disorder. Med Hypotheses, 2008, 71(4):493-500.
|
5. |
Ogawa R. Mechanobiology of scarring. Wound Repair Regen, 2011, 19 Suppl 1:s2-9.
|
6. |
Ohmori Y, Akaishi S, Ogawa R, et al. The analysisof keloid favorite site. The 4th Japan Scar Workshop, Tokyo, Japan, 2009.
|
7. |
Parsons M, Kessler E, Laurent GJ, et al. Mechanical load enhances procollagen processing in dermal fibroblasts by regulating levels of procollagen C-proteinase. Exp Cell Res, 1999, 252(2):319-331.
|
8. |
Balestrini JL, Billiar KL. Equibiaxial cyclic stretch stimulates fibroblasts to rapidly remodel fibrin. J Biomech, 2006, 39(16):2983-2990.
|
9. |
王志国, 匡瑞霞, 陈振雨, 等. 不同幅度牵张力对正常皮肤成纤维细胞向增生性瘢痕成纤维细胞转化的诱导作用. 中华医学杂志, 2015, 95(4):294-298.
|
10. |
舒茂国, 易成刚, 韩岩, 等. 机械应力刺激对培养的人成纤维细胞分泌生长因子的影响. 中国美容医学, 2008, 17(5):689-691.
|
11. |
Syedain ZH, Tranquillo RT. TGF-β1 diminishes collagen production during long-term cyclic stretching of engineered connective tissue:implication of decreased ERK signaling. J Biomech, 2011, 44(5):848-855.
|
12. |
Wipff PJ, Rifkin DB, Meister JJ, et al. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol, 2007, 179(6):1311-1323.
|
13. |
Wang Z, Fong KD, Phan TT, et al. Increased transcriptional response to mechanical strain in keloid fibroblasts due to increased focal adhesion complex formation. J Cell Physiol, 2006, 206(2):510-517.
|
14. |
Kanazawa Y, Nomura J, Yoshimoto S, et al. Cyclical cell stretching of skin-derived fibroblasts downregulates connective tissue growth factor (CTGF) production. Connect Tissue Res, 2009, 50(5):323-329.
|
15. |
Baker EL, Zaman MH. The biomechanical integrin. J Biomech, 2010, 43(1):38-44.
|
16. |
Goldmann WH. Mechanotransduction and focal adhesions. Cell Biol Int, 2012, 36(7):649-652.
|
17. |
Cheng M, Guan X, Li H, et al. Shear stress regulates late EPC differentiation via mechanosensitive molecule-mediated cytoskeletal rearrangement. PLoS One, 2013, 8(7):e67675.
|
18. |
Wang Y, McNiven MA. Invasive matrix degradation at focal adhesions occurs via protease recruitment by a FAK-p130Cas complex. J Cell Biol, 2012, 196(3):375-385.
|
19. |
Janoštiak R, Brábek J, Auernheimer V, et al. CAS directly interacts with vinculin to control mechanosensing and focal adhesion dynamics. Cell Mol Life Sci, 2014, 71(4):727-744.
|
20. |
Hannafin JA, Attia EA, Henshaw R, et al. Effect of cyclic strain and plating matrix on cell proliferation and integrin expression by ligament fibroblasts. J Orthop Res, 2006, 24(2):149-158.
|
21. |
Demou ZN. Gene expression profiles in 3D tumor analogs indicate compressive strain differentially enhances metastatic potential. Ann Biomed Eng, 2010, 38(11):3509-3520.
|