1. |
韩璐, 危岩, 刘成梅, 等.生物印刷电子材料的研究进展.中国印刷与包装研究, 2013, 5(3): 1-10.
|
2. |
田冶, 曾庆慧, 胡相华, 等. 3D打印技术及在组织工程领域的研究进展.中国医疗器械信息, 2015, (8): 7-12.
|
3. |
Hoy MB. 3D printing: making things at the library. Med Ref Serv Q, 2013, 32(1): 94-99.
|
4. |
Wüst S, Müller R, Hofmann S. Controlled positioning of cells in biomaterials-approaches towards 3D tissue printing. J Funct Biomater, 2011, 2(3): 119-154.
|
5. |
陈雪. 3D打印技术在医学中的发展应用.广东科技, 2014, (15): 60-63.
|
6. |
石静, 钟玉敏.组织工程中3D生物打印技术的应用.中国组织工程研究, 2014, 18(2): 271-276.
|
7. |
Do AV, Khorsand B, Geary SM, et al. 3D printing of scaffolds for tissue regeneration applications. Adv Healthc Mater, 2015, 4(12): 1742-1762.
|
8. |
Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 2001, 7(2): 211-228.
|
9. |
Pati F, Ha DH, Jang J, et al. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials, 2015, 62: 164-175.
|
10. |
Yu C, Bianco J, Brown C, et al. Porous decellularized adipose tissue foams for soft tissue regeneration. Biomaterials, 2013, 34(13): 3290-3302.
|
11. |
Lee MK, DeConde AS, Lee M, et al. Biomimetic scaffolds facilitate healing of critical-sized segmental mandibular defects. Am J Otolaryngol, 2015, 36(1): 1-6.
|
12. |
Caetano GF, Bártolo PJ, Domingos M, et al. Osteogenic differentiation of adipose-derived mesenchymal stem cells into polycaprolactone (PCL) scaffold. Procedia Eng, 2015, 110: 59-66.
|
13. |
Guneta V, Wang JK, Maleksaeedi S, et al. Three dimensional printing of titanium for bone tissue engineering applications: a preliminary study. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 2014, 21: 101-115.
|
14. |
Ye K, Felimban R, Traianedes K, et al. Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold. PLoS One, 2014, 9(6): e99410.
|
15. |
Ahtiainen K, Sippola L, Nurminen M, et al. Effects of chitosan and bioactive glass modifications of knitted and rolled polylactide-based 96/4 L/D scaffolds on chondrogenic differentiation of adipose stem cells. J Tissue Eng Regen Med, 2015, 9(1): 55-65.
|
16. |
Zhao X, Liu L, Wang J, et al. In vitro vascularization of a combined system based on a 3D printing technique. J Tissue Eng Regen Med, 2014. [Epub ahead of print].
|
17. |
Temple JP, Hutton DL, Hung BP, et al. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J Biomed Mater Res A, 2014, 102(12): 4317-4325.
|
18. |
NONG Kate, AI Kaixing. Developments of 3D culture systems for improving the efficacy of hepatic differentiation from cells: a review in current progress.外科研究与新技术, 2015, 4(2):114-122.
|
19. |
Lee HJ, Kim YB, Ahn SH, et al. A new approach for fabricating collagen/ECM-based bioinks using preosteoblasts and human adipose stem cells. Adv Healthc Mater, 2015, 4(9): 1359-1368.
|
20. |
Lin H, Zhang DN, Yang G, et al. Fabrication of 3-Dimensional live cell-biomaterial constructs using a visible light-based stereolithographic printer. Orthopaedic Research Society 2012 Annual Meeting. Rosemont, IL: Orthopaedic Research Society, 2012.
|
21. |
Declercq HA, De Caluwé T, Krysko O, et al. Bone grafts engineered from human adipose-derived stem cells in dynamic 3D-environments. Biomaterials, 2013, 34(4): 1004-1017.
|