1. |
Funck-Brentano T, Cohen-Solal M. Subchondral bone and osteoarthritis. Curr Opin Rheumatol, 2015, 27(4): 420-426.
|
2. |
Brandt KD, Radin EL, Dieppe PA,et al. Yet more evidence that osteoarthritis is not a cartilage disease. Ann Rheum Dis, 2006, 65(10): 1261-1264.
|
3. |
Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res, 1986, (213): 34-40.
|
4. |
Sharma AR, Jagga S, Lee SS,et al. Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis. Int J Mol Sci, 2013, 14(10): 19805-19830.
|
5. |
Botter SM, van Osch GJ, Clockaerts S,et al. Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice: an in vivo microfocal computed tomography study. Arthritis Rheum, 2011, 63(9): 2690-2699.
|
6. |
Jaiprakash A, Prasadam I, Feng JQ,et al. Phenotypic characterization of osteoarthritic osteocytes from the sclerotic zones: a possible pathological role in subchondral bone sclerosis. Int J Biol Sci, 2012, 8(3): 406-417.
|
7. |
Pritzker KP, Gay S, Jimenez SA,et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage, 2006, 14(1): 13-29.
|
8. |
Veverka V, Henry AJ, Slocombe PM,et al. Characterization of the structural features and interactions of sclerostin: molecular insight into a key regulator of Wnt-mediated bone formation. J Biol Chem, 2009, 284(16): 10890-10900.
|
9. |
Wu L, Guo H, Sun K,et al. Sclerostin expression in the subchondral bone of patients with knee osteoarthritis. Int J Mol Med, 2016, 38(5): 1395-1402.
|
10. |
Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis, 1957, 16(4): 494-502.
|
11. |
Yu DG, Nie SB, Liu FX,et al. Dynamic alterations in microarchitecture, mineralization and mechanical property of subchondral bone in rat medial meniscal tear model of osteoarthritis. Chin Med J (Engl), 2015, 128(21): 2879-2886.
|
12. |
Nevitt MC, Zhang Y, Javaid MK,et al. High systemic bone mineral density increases the risk of incident knee OA and joint space narrowing, but not radiographic progression of existing knee OA: the MOST study. Ann Rheum Dis, 2010, 69(1): 163-168.
|
13. |
Finnilä MA, Thevenot J, Aho OM,et al. Association between subchondral bone structure and osteoarthritis histopathological grade. J Orthop Res, 2016. [Epub ahead of print].
|
14. |
Compton JT, Lee FY. A review of osteocyte function and the emerging importance of sclerostin. J Bone Joint Surg (Am), 2014, 96(19): 1659-1668.
|
15. |
Robling AG, Niziolek PJ, Baldridge LA,et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem, 2008, 283(9): 5866-5875.
|
16. |
Spatz JM, Wein MN, Gooi JH,et al. The Wnt inhibitor sclerostin is up-regulated by mechanical unloading in osteocytesin vitro. J Biol Chem, 2015, 290(27): 16744-16758.
|
17. |
Goldring SR. The osteocyte: key player in regulating bone turnover. RMD Open, 2015, 1(Suppl 1): e000049.
|
18. |
Chou CH, Wu CC, Song IW,et al. Genome-wide expression profiles of subchondral bone in osteoarthritis. Arthritis Res Ther, 2013, 15(6): R190.
|
19. |
Becker CB. Sclerostin inhibition for osteoporosis——a new approach. N Engl J Med, 2014, 370(5): 476-477.
|
20. |
MacNabb C, Patton D, Hayes JS. Sclerostin antibody therapy for the treatment of osteoporosis: Clinical prospects and challenges. J Osteoporos, 2016, 2016: 6217286.
|
21. |
Appelman-Dijkstra NM, Papapoulos SE. Sclerostin inhibition in the management of osteoporosis. Calcif Tissue Int, 2016, 98(4): 370-380.
|
22. |
Barr AJ, Campbell TM, Hopkinson D,et al. A systematic review of the relationship between subchondral bone features, pain and structural pathology in peripheral joint osteoarthritis. Arthritis Res Ther, 2015, 17(25): 228.
|