1. |
Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res, 1986, (205): 299-308.
|
2. |
Clemens MW, Chang EI, Selber JC, et al. Composite extremity and trunk reconstruction with vascularized fibula flap in postoncologic bone defects: a 10-year experience. Plast Reconstr Surg, 2012, 129(1): 170-178.
|
3. |
杨运发, 张光明, 徐中和. 下肢创伤后大段感染性骨缺损的分型及修复. 中华创伤骨科杂志, 2010, 12(5): 417-420.
|
4. |
Brandoff JF, Silber JS, Vaccaro AR. Contemporary alternatives to synthetic bone grafts for spine surgery. Am J Orthop (Belle Mead NJ), 2008, 37(8): 410-414.
|
5. |
Lindsey RW, Gugala Z, Milne E, et al. The efficacy of cylindrical titanium mesh cage for the reconstruction of a critical-size canine segmental femoral diaphyseal defect. J Orthop Res, 2006, 24(7): 1438-1453.
|
6. |
Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 2006, 27(9): 1728-1734.
|
7. |
Kim WJ, Chung SW, Chung CS, et al. Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures. Acta Materialia, 2001, 49(16): 3337-3345.
|
8. |
Flatman PW. Magnesium transport across cell membranes. J Membr Biol, 1984, 80(1): 1-14.
|
9. |
Wu L, Luthringer BJ, Feyerabend F, et al. Effects of extracellular magnesium on the differentiation and function of human osteoclasts. Acta Biomater, 2014, 10(6): 2843-2854.
|
10. |
Arnaud MJ. Update on the assessment of magnesium status. Br J Nutri, 2008, 99 Suppl 3: S24-36.
|
11. |
Elin RJ. Assessment of magnesium status. Clin Chem, 1987, 33(11): 1965-1970.
|
12. |
Gibson IR, Huang J, Best SM, et al. Enhanced in vitro cell activity and surface apatite layer formation on novel silicon substituted hydroxyapatites. Bioceramics, 1999, 12: 191-194.
|
13. |
Park JW, Kim YJ, Jang JH, et al. Osteoblast response to magnesium ion-incorporated nanoporous titanium oxide surfaces. Clin Oral Implants Res, 2010, 21(11): 1278-1287.
|
14. |
Xu L, Yu G, Zhang E, et al. In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. J Biomed Mater Res, 2007, 83(3): 703-711.
|
15. |
Smith MR, Atkinson P, White D, et al. Design and assessment of a wrapped cylindrical Ca-P AZ31 Mg alloy for critical-size ulna defect repair. J Biomed Mater Res B Appl Biomater, 2012, 100(1): 206-216.
|
16. |
葛野, 李世慧, 李建军, 等. 镁锶合金修复兔桡骨骨缺损的实验研究. 生物骨科材料与临床研究, 2016, 13(5): 1-5.
|
17. |
Guo JW, Sun SY, Wang YM, et al. Hydrothermal biomimetic modification of micro-arc oxidized magnesium alloy for enhanced corrosion resistance and deposition behaviors in SBF. Surface and Coatings Technology, 2015, 269(15): 183-190.
|
18. |
Lane J, Sandhu H. Current approaches to experimental bone grafting. Orthop Clin North Am, 1987, 18(2): 213-225.
|
19. |
Fazel Anvari-Yazdi A, Tahermanesh K, Hadavi SM, et al. Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys. Mater Sci Eng C Mater Biol Appl, 2016, 69: 584-597.
|
20. |
Zhao J, CHEN JL, YU K, et al. Effects of chitosan coating on biocompatibility of Mg-6%Zn-10%Ca3(PO4)2 implant. Trans Nonferrous Met Soc. China, 2015, 3: 824-831.
|
21. |
Jang Y, Tan Z, Jurey C, et al. Understanding corrosion behavior of Mg-Zn-Ca alloys from subcutaneous mouse model: effect of Zn element concentration and plasma electrolytic oxidation. Mater Sci Eng C Mater Biol Appl, 2015, 48: 28-40.
|
22. |
Zeng RC, Cui LY, Jiang K, et al. In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly (L-lactic acid) composite coating on Mg-1Li-1Ca alloy for orthopedic implants. ACS Appl Mater Interfaces, 2016, 8(15): 10014-10028.
|
23. |
Wu YF, Wang YM, Jing YB, et al. In vivo study of microarc oxidation coated biodegradable magnesium plate to heal bone fracture defect of 3mm width. Colloids Surf B Biointerfaces, 2017, 158: 147-156.
|
24. |
Chen S, Guan SK, Li W, et al. In vivo degradation and bone response of a composite coating on Mg-Zn-Ca alloy prepared by microarc oxidation and electrochemical deposition. J Biomed Mater Res B Appl Biomater, 2012, 100(2): 533-543.
|