1. |
Brinkmann V, Davis MD, Heise CE, et al. The immunemodulator FTY720 targets sphingosine 1-phosphatereceptors. J Biol Chem, 2002, 277(24): 21453-21457.
|
2. |
Ettenger R, Schmouder R, Kovarik JM, et al. Pharmacokinetics, pharmacodynamics, safety, and tolerability of single-dose fingolimod (FTY720) in adolescents with stable renal transplants. Pediatr Transplant, 2015, 15(4): 406-413.
|
3. |
熊苗, 朱洁萍, 李莉, 等. 过继转移 FTY720-DC 对自然流产模型孕鼠胚胎丢失率的影响. 上海交通大学学报(医学版), 2016, 36(6): 793-798.
|
4. |
王燕, 扈金萍. 鞘氨醇-1-磷酸转运体 Spns2 的研究进展. 国际药学研究杂志, 2016, 43(6): 1043-1048.
|
5. |
白洁, 扈金萍. 鞘氨醇-1-磷酸信号通路相关的药物研究进展. 药学学报, 2016, 51(12): 1822-1828.
|
6. |
Zhang D, Huang Y, Huang Z, et al. FTY-720P suppresses osteoclast formation by regulating expression of interleukin-6(IL-6), interleukin-4(IL-4), and matrix metalloproteinase 2(MMP-2). Med Sci Monit, 2016, 22: 2187-2194.
|
7. |
陈智颖, 左洁仪, 兰万利, 等. FTY720-P 对成骨细胞分化成熟的作用. 广东医学, 2017, 38(13): 1957-1961.
|
8. |
Leis HJ, Windischhofer W. Potentiation of endothelin-1-induced prostaglandin E2 formation by Ni (2+) and Sr (2+) in murine osteoblastic MC3T3-E1 cells. J Trace Elem Med Biol, 2016, 33: 81-86.
|
9. |
Bueno-Vera JA, Torres-Zapata I, Sundaram PA, et al. Electrochemical characterization of MC3T3-E1 cells cultured on γTiAl and Ti-6Al-4V alloys. Bioelectrochemistry, 2015, 106(Pt B): 316-327.
|
10. |
Shinomiya T, Li XK, Amemiya H, et al. An immunosuppressive agent, FTY720, increases in tracellular concentration of calcium ion and induces apoptosis in HL-60. Immunology, 1997, 91(4): 594-600.
|
11. |
Wang Z, Hu H, Li Z, et al. Sheet of osteoblastic cells combined with platelet-rich fibrin improves the formation of bone in critical-size calvarial defects in rabbits. Br J Oral Maxillofacial Surg, 2016, 54(3): 316-321.
|
12. |
Xu X, Gao Y, Shan F, et al. A novel role for RGMa in modulation of bone marrow-derived dendritic cells maturation induced by lipopolysaccharide. Int Immunopharmacol, 2016, 33: 99-107.
|
13. |
Guo J, Watterson SH, Spergel SH, et al. Identification and synthesis of potent and selective pyridyl-isoxazole based agonists of sphingosine-1-phosphate 1(S1P1). Bioorg Med Chem Lett, 2016, 26(10): 2470-2474.
|
14. |
郭海玲, 王翔, 徐宇, 等. 黄芪调控体外培养大鼠成骨细胞 Ⅰ 型胶原蛋白的表达. 中国组织工程研究, 2010, 14(7): 1257-1261.
|
15. |
Ho MH, Liao MH, Lin YL, et al. Improving effects of chitosannanofiber scaffolds on osteoblast proliferation and maturation. Int J Nanomedicine, 2014, 9: 4293-4304.
|
16. |
Izu Y, Ezura Y, Koch M, et al. Erratum to: Collagens Ⅵ and Ⅻ form complexes mediating osteoblast interactions during osteogenesis. Cell Tissue Res, 2016, 364(3): 677-679.
|
17. |
Das A, Barker DA, Wang T, et al. Delivery of bioactive lipids from composite microgel-microsphere injectable scaffolds enhances stem cell recruitment and skeletal repair. PLoS One, 2014, 9(7): e101276.
|
18. |
Liu Zhonghou. The diagnosis of osteoporosis. Hong Kong: Chinese modern literature and Art Publishing House, 2016: 452-465.
|
19. |
Matsugaki A, Fujiwara N, Nakano T. Continuous cyclic stretch induces osteoblast alignment and formation of anisotropic collagen fiber matrix. Acta Biomater, 2013, 3(19): 1878-1889.
|
20. |
Dehaghani MT, Ahmadian M. Porous vitalium-base nano-composite for bone replacement: Fabrication, mechanical, and in vitro biological properties. J Mech Behav Biomed Mater, 2016, 57: 297-309.
|
21. |
朱文辉, 陈世益. 肌球蛋白重链及 Ⅰ、Ⅲ 型胶原在骨骼肌损伤修复中的作用. 中国运动医学杂志, 2002, 21(2): 179-182.
|