1. |
Langer R, Vacanti JP. Tissue engineering. Science, 1993, 260(5110): 920-926.
|
2. |
Li JJ, Ebied M, Xu J, et al. Current approaches to bone tissue engineering: The interface between biology and engineering. Adv Healthc Mater, 2018, 7(6): e1701061.
|
3. |
Ghassemi T, Shahroodi A, Ebrahimzadeh MH, et al. Current concepts in scaffolding for bone tissue engineering. Arch Bone Jt Surg, 2018, 6(2): 90-99.
|
4. |
Kim HD, Amirthalingam S, Kim SL, et al. Biomimetic materials and fabrication approaches for bone tissue engineering. Adv Healthc Mater, 2017, 6(23). doi: 10.1002/adhm.201700612.
|
5. |
Asri RIM, Harun WSW, Samykano M, et al. Corrosion and surface modification on biocompatible metals: a review. Mater Sci Eng C Mater Biol Appl, 2017, 77: 1261-1274.
|
6. |
Mohandas G, Oskolkov N, McMahon MT, et al. Porous tantalum and tantalum oxide nanoparticles for regenerative medicine. Acta Neurobiol Exp (Wars), 2014, 74(2): 188-196.
|
7. |
Cohen R. A porous tantalum trabecular metal: basic science. Am J Orthop (Belle Mead NJ), 2002, 31(4): 216-217.
|
8. |
Liu Y, Bao C, Wismeijer D, et al. The physicochemical/biological properties of porous tantalum and the potential surface modification techniques to improve its clinical application in dental implantology. Mater Sci Eng C Mater Biol Appl, 2015, 49: 323-329.
|
9. |
Ling TX, Li JL, Zhou K, et al. The use of porous tantalum augments for the reconstruction of acetabular defect in primary total hip arthroplasty. J Arthroplasty, 2018, 33(2): 453-459.
|
10. |
Gee EC, Jordan R, Hunt JA, et al. Current evidence and future directions for research into the use of tantalum in soft tissue re-attachment surgery. Journal of Materials Chemistry B, 2016, 4(6): 1020-1034.
|
11. |
Li X, Wang L, Yu X, et al. Tantalum coating on porous ti6al4v scaffold using chemical vapor deposition and preliminary biological evaluation. Mater Sci Eng C Mater Biol Appl, 2013, 33(5): 2987-2994.
|
12. |
Wauthle R, van der Stok J, Amin Yavari S, et al. Additively manufactured porous tantalum implants. Acta Biomater, 2015, 14: 217-225.
|
13. |
Balla VK, Bodhak S, Bose S, et al. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties. Acta Biomater, 2010, 6(8): 3349-3359.
|
14. |
Bencharit S, Byrd WC, Altarawneh S, et al. Development and applications of porous tantalum trabecular metal-enhanced titanium dental implants. Clin Implant Dent Relat Res, 2014, 16(6): 817-826.
|
15. |
Rahbek O, Kold S, Zippor B, et al. Particle migration and gap healing around trabecular metal implants. Int Orthop, 2005, 29(6): 368-374.
|
16. |
Ninomiya JT, Struve JA, Krolikowski J, et al. Porous ongrowth surfaces alter osteoblast maturation and mineralization. J Biomed Mater Res A, 2015, 103(1): 276-281.
|
17. |
Sagomonyants KB, Hakim-Zargar M, Jhaveri A, et al. Porous tantalum stimulates the proliferation and osteogenesis of osteoblasts from elderly female patients. J Orthop Res, 2011, 29(4): 609-616.
|
18. |
Wang Q, Zhang H, Li Q, et al. Biocompatibility and osteogenic properties of porous tantalum. Exp Ther Med, 2015, 9(3): 780-786.
|
19. |
Gordon WJ, Conzemius MG, Birdsall E, et al. Chondroconductive potential of tantalum trabecular metal. J Biomed Mater Res B Appl Biomater, 2005, 75(2): 229-233.
|
20. |
Jamil K, Chua KH, Joudi S, et al. Development of a cartilage composite utilizing porous tantalum, fibrin, and rabbit chondrocytes for treatment of cartilage defect. J Orthop Surg Res, 2015, 10: 27.
|
21. |
Reach JS Jr, Dickey ID, Zobitz ME, et al. Direct tendon attachment and healing to porous tantalum: an experimental animal study. J Bone Joint Surg (Am), 2007, 89(5): 1000-1009.
|
22. |
Babis GC, Stavropoulos NA, Sasalos G, et al. Metallosis and elevated serum levels of tantalum following failed revision hip arthroplasty——a case report. Acta Orthop, 2014, 85(6): 677-680.
|
23. |
Schoon J, Geissler S, Traeger J, et al. Multi-elemental nanoparticle exposure after tantalum component failure in hip arthroplasty: In-depth analysis of a single case. Nanomedicine, 2017, 13(8): 2415-2423.
|
24. |
Tobin EJ. Recent coating developments for combination devices in orthopedic and dental applications: A literature review. Adv Drug Deliv Rev, 2017, 112: 88-100.
|
25. |
Mas-Moruno C, Garrido B, Rodriguez D, et al. Biofunctionalization strategies on tantalum-based materials for osseointegrative applications. J Mater Sci Mater Med, 2015, 26(2): 109.
|
26. |
Garcia-Gareta E, Hua J, Orera A, et al. Biomimetic surface functionalization of clinically relevant metals used as orthopaedic and dental implants. Biomed Mater, 2017, 13(1): 015008.
|
27. |
Xu HH, Wang P, Wang L, et al. Calcium phosphate cements for bone engineering and their biological properties. Bone Res, 2017, 5: 17056.
|
28. |
Barrère F, van der Valk CM, Meijer G, et al. Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats. J Biomed Mater Res B Appl Biomater, 2003, 67(1): 655-665.
|
29. |
Li Y, Yang W, Li X, et al. Improving osteointegration and osteogenesis of three-dimensional porous ti6al4v scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating. ACS Appl Mater Interfaces, 2015, 7(10): 5715-5724.
|
30. |
Wang Q, Zhang H, Gan H, et al. Application of combined porous tantalum scaffolds loaded with bone morphogenetic protein 7 to repair of osteochondral defect in rabbits. Int Orthop, 2018.[Epub ahead of print].
|
31. |
Guo X, Chen M, Feng W, et al. Electrostatic self-assembly of multilayer copolymeric membranes on the surface of porous tantalum implants for sustained release of doxorubicin. Int J Nanomedicine, 2011, 6: 3057-3064.
|