1. |
Hoque ME, Chuan YL, Pashby I. Extrusion based rapid prototyping technique: an advanced platform for tissue engineering scaffold fabrication. Biopolymers, 2012, 97(2): 83-93.
|
2. |
Wei G, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials, 2004, 25(19): 4749-4757.
|
3. |
Vinatier C, Mrugala D, Jorgensen C, et al. Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol, 2009, 27(5): 307-314.
|
4. |
Gleeson JP, Plunkett NA, O’Brien FJ, Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration. Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration. Eur Cell Mater, 2010, 20: 218-230.
|
5. |
Wang X, Lou T, Zhao W, et al. The effect of fiber size and pore size on cell proliferation and infiltration in PLLA scaffolds on bone tissue engineering. J Biomater Appl, 2016, 30(10): 1545-1551.
|
6. |
Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005, 26(27): 5474-5491.
|
7. |
Baker RM, Tseng LF, Iannolo MT, et al. Self-deploying shape memory polymer scaffolds for grafting and stabilizing complex bone defects: A mouse femoral segmental defect study. Biomaterials, 2016, 76: 388-398.
|
8. |
Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol, 2008, 3(Suppl 3): S131-S139.
|
9. |
李东. 低温3D打印技术联合冷冻干燥法制备 SF/COL/nHA 仿生骨组织工程支架及其性能的研究. 天津: 天津医科大学, 2016.
|
10. |
张燕. 三维培养条件下动态载荷对 MC3T3-E1 成骨样细胞生物学效应影响的研究. 北京: 中国人民解放军军事医学科学院, 2010.
|
11. |
Sanz-Herrera JA, García-Aznar JM, Doblaré M. Micro-macro numerical modelling of bone regeneration in tissue engineering. Computer Methods in Applied Mechanics and Engineering, 2008, 197(s33-40): 3092-3107.
|
12. |
张建明. 组织工程支架在流固场中力学环境的研究. 天津: 天津理工大学, 2013.
|
13. |
徐晓莹. 骨组织工程中细胞三维培养力学环境的研究. 北京: 中国人民解放军军事医学科学院, 2009.
|
14. |
李瑞欣. 力学作用下微、纳米 HA/CS 共混体系中微观结构参数对成骨前体细胞 MC3T3-E1 生物学特性的影响. 北京: 中国人民解放军军事医学科学院, 2012.
|
15. |
Rodríguez JP, González M, Ríos S, et al. Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation. J Cell Biochem, 2004, 93(4): 721-731.
|
16. |
闫玉仙, 宋梅, 郭春, 等. 基底拉伸应变对小鼠三种骨组织细胞 BMP-2 mRNA 表达的影响. 中国老年学杂志, 2010, 30(21): 3092-3095.
|
17. |
An J, Yang H, Zhang Q, et al. Natural products for treatment of osteoporosis: The effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci, 2016, 147: 46-58.
|
18. |
Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec, 1987, 219(1): 1-9.
|
19. |
Hempel U, Möller S, Noack C, et al. Sulfated hyaluronan/collagenⅠmatrices enhance the osteogenic differentiation of human mesenchymal stromal cells in vitro even in the absence of dexamethasone. Acta Biomaterialia, 2012, 8(11): 4064-4072.
|
20. |
王亮. 力学拉伸应变对成骨细胞的影响及其作用机制的研究. 北京: 中国人民解放军军事医学科学院, 2011.
|
21. |
Schwetz V, Pieber T, Obermayer-Pietsch B. The endocrine role of the skeleton: background and clinical evidence. Eur J Endocrinol, 2012, 166(6): 959-967.
|
22. |
孙健, 余优成, 顾章愉, 等. BMP-2 对大鼠骨髓间充质干细胞成骨作用的影响. 上海口腔医学, 2011, 20(4): 352-357.
|
23. |
Gunson D, Gropp KE, Varela A. Bone and Joints//Haschek and Rousseaux’s Handbook of Toxicologic Pathology. 3rd Ed. Boston: Academic Press, 2013: 2761-2858.
|
24. |
Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem, 2010, 285(33): 25103-25108.
|
25. |
唐丽灵, 王远亮, 谷俐, 等. 不同应变水平拉伸对成骨细胞生理功能的影响. 重庆大学学报 (自然科学版), 2003, 26(3): 67-70.
|