1. |
Seale NM, Varghese S. Biomaterials for pluripotent stem cell engineering: From fate determination to vascularization. J Mater Chem B, 2016, 4(20): 3454-3463.
|
2. |
Schumann P, Lindhorst D, von See C, et al. Accelerating the early angiogenesis of tissue engineering constructs in vivo by the use of stem cells cultured in matrigel. J Biomed Mater Res A, 2014, 102(6): 1652-1662.
|
3. |
Lane JM, Sandhu HS. Current approaches to experimental bone grafting. Orthop Clin North Am, 1987, 18(2): 213-225.
|
4. |
Nandi SK, Kundu B, Ghosh SK, et al. Efficacy of nano-hydroxyapatite prepared by an aqueous solution combustion technique in healing bone defects of goat. J Vet Sci, 2008, 9(2): 183-191.
|
5. |
Yuan J, Cui L, Zhang WJ, et al. Repair of canine mandibular bone defects with bone marrow stromal cells and porous beta-tricalcium phosphate. Biomaterials, 2007, 28(6): 1005-1013.
|
6. |
Nishida J, Shimamura T. Methods of reconstruction for bone defect after tumor excision: a review of alternatives. Med Sci Monit, 2008, 14(8): R107-R113.
|
7. |
Bernstein P, Bornhäuser M, Günther KP, et al. Bone tissue engineering in clinical application: assessment of the current situation. Orthopade, 2009, 38(11): 1029-1037.
|
8. |
Wang MO, Vorwald CE, Dreher ML, et al. Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering. Adv Mater, 2015, 27(1): 138-144.
|
9. |
Koupaei N, Karkhaneh A, Daliri Joupari M. Preparation and characterization of (PCL-crosslinked-PEG)/hydroxyapatite as bone tissue engineering scaffolds. J Biomed Mater Res A, 2015, 103(12): 3919-3926.
|
10. |
Yu H, Zeng X, Deng C, et al. Exogenous VEGF introduced by bioceramic composite materials promotes the restoration of bone defect in rabbits. Biomed Pharmacother, 2018, 98: 325-332.
|
11. |
Liu Z, Yuan X, Liu M, et al. Antimicrobial peptide combined with BMP2-modified mesenchymal stem cells promotes calvarial repair in an osteolytic model. Mol Ther, 2018, 26(1): 199-207.
|
12. |
Kobayashi N, Hashimoto Y, Otaka A, et al. Porous alpha-tricalcium phosphate with immobilized basic fibroblast growth factor enhances bone regeneration in a canine mandibular bone defect model. Materials (Basel), 2016, 9(10): pii: E853.
|
13. |
Silva de Oliveira JC, Okamoto R, Sonoda CK, et al. Evaluation of the osteoinductive effect of PDGF-BB associated with different carriers in bone regeneration in bone surgical defects in rats. Implant Dent, 2017, 26(4): 559-566.
|
14. |
Gao Y, Li C, Wang H, et al. Acceleration of bone-defect repair by using A-W MGC loaded with BMP2 and triple point-mutant HIF1α-expressing BMSCs. J Orthop Surg Res, 2015, 10: 83.
|
15. |
Liu X, Zhang G, Hou C, et al. Vascularized bone tissue formation induced by fiber-reinforced scaffolds cultured with osteoblasts and endothelial cells. Biomed Res Int, 2013, 2013: 854917.
|
16. |
赵萍萍, 刘陶文. Ang/Tie2 系统与肿瘤血管生成的关系. 医学综述, 2011, 17(21): 3250-3252.
|
17. |
Augustin HG, Koh GY, Thurston G, et al. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol, 2009, 10(3): 165-177.
|
18. |
Huang JJ, Shi YQ, Li RL, et al. Angiogenesis effect of therapeutic ultrasound on HUVECs through activation of the PI3K-Akt-eNOS signal pathway. Am J Transl Res, 2015, 7(6): 1106-1115.
|
19. |
殷建, 殷照阳, 杨海源, 等. 自噬现象及其在脊髓缺血再灌注损伤中作用的研究进展. 中国脊柱脊髓杂志, 2015, 25(6): 557-562.
|
20. |
Jiang F. Autophagy in vascular endothelial cells. Clin Exp Pharmacol Physiol, 2016, 43(11): 1021-1028.
|
21. |
Goyal A, Gubbiotti MA, Chery DR, et al. Endorepellin-evoked autophagy contributes to angiostasis. J Biol Chem, 2016, 291(37): 19245-19256.
|
22. |
Li R, Du J, Chang Y. Role of autophagy in hypoxia-induced angiogenesis of RF/6A cells in vitro. Curr Eye Res, 2016, 41(12): 1566-1570.
|
23. |
Kumar S, Guru SK, Pathania AS, et al. Autophagy triggered by magnolol derivative negatively regulates angiogenesis. Cell Death Dis, 2013, 4: e889.
|
24. |
Fiedler U, Scharpfenecker M, Koidl S, et al. The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood, 2004, 103(11): 4150-4156.
|
25. |
Gill KA, Brindle NP. Angiopoietin-2 stimulates migration of endothelial progenitors and their interaction with endothelium. Biochem Biophys Res Commun, 2005, 336(2): 392-396.
|
26. |
Helfrich I, Edler L, Sucker A, et al. Angiopoietin-2 levels are associated with disease progression in metastatic malignant melanoma. Clin Cancer Res, 2009, 15(4): 1384-1392.
|
27. |
Sfiligoi C, de Luca A, Cascone I, et al. Angiopoietin-2 expression in breast cancer correlates with lymph node invasion and short survival. Int J Cancer, 2003, 103(4): 466-474.
|
28. |
Goede V, Coutelle O, Neuneier J, et al. Identification of serum angiopoietin-2 as a biomarker for clinical outcome of colorectal cancer patients treated with bevacizumab-containing therapy. Br J Cancer, 2010, 103(9): 1407-1414.
|
29. |
Wang X, Bullock AJ, Zhang L, et al. The role of angiopoietins as potential therapeutic targets in renal cell carcinoma. Transl Oncol, 2014, 7(2): 188-195.
|
30. |
Scholz A, Harter PN, Cremer S, et al. Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma. EMBO Mol Med, 2016, 8(1): 39-57.
|
31. |
Falcón BL, Hashizume H, Koumoutsakos P, et al. Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. Am J Pathol, 2009, 175(5): 2159-2170.
|
32. |
Coxon A, Bready J, Min H, et al. Context-dependent role of angiopoietin-1 inhibition in the suppression of angiogenesis and tumor growth: implications for AMG 386, an angiopoietin-1/2-neutralizing peptibody. Mol Cancer Ther, 2010, 9(10): 2641-2651.
|
33. |
Theelen TL, Lappalainen JP, Sluimer JC, et al. Angiopoietin-2 blocking antibodies reduce early atherosclerotic plaque development in mice. Atherosclerosis, 2015, 241(2): 297-304.
|
34. |
He J, Bao Q, Zhang Y, et al. Yes-associated protein promotes angiogenesis via signal transducer and activator of transcription 3 in endothelial cells. Circ Res, 2018, 122(4): 591-605.
|
35. |
Williams JA, Thomas AM, Li G, et al. Tissue specific induction of p62/Sqstm1 by farnesoid X receptor. PLoS One, 2012, 7(8): e43961.
|
36. |
Yin ZY, Yin J, Huo YF, et al. Rapamycin facilitates fracture healing through inducing cell autophagy and suppressing cell apoptosis in bone tissues. Eur Rev Med Pharmacol Sci, 2017, 21(21): 4989-4998.
|
37. |
Li X, Wei J, Aifantis KE, et al. Current investigations into magnetic nanoparticles for biomedical applications. J Biomed Mater Res A, 2016, 104(5): 1285-1296.
|
38. |
Li X, Gao H, Uo M, et al. Effect of carbon nanotubes on cellular functions in vitro. J Biomed Mater Res A, 2009, 91(1): 132-139.
|