1. |
Dohan Ehrenfest DM, de Peppo GM, Doglioli P, et al. Slow release of growth factors and thrombospondin-1 in Choukroun’s platelet-rich fibrin (PRF): a gold standard to achieve for all surgical platelet concentrates technologies. Growth Factors, 2009, 27(1): 63-69.
|
2. |
Ghanaati S, Booms P, Orlowska A, et al. Advanced platelet-rich fibrin: a new concept for cell-based tissue engineering by means of inflammatory cells. J Oral Implantol, 2014, 40(6): 679-689.
|
3. |
Kim TH, Kim SH, Sándor GK, et al. Comparison of platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and concentrated growth factor (CGF) in rabbit-skull defect healing. Arch Oral Biol, 2014, 59(5): 550-558.
|
4. |
Kobayashi E, Flückiger L, Fujioka-Kobayashi M, et al. Comparative release of growth factors from PRP, PRF, and advanced-PRF. Clin Oral Investig, 2016, 20(9): 2353-2360.
|
5. |
Siddiqui ZR, Jhingran R, Bains VK, et al. Comparative evaluation of platelet-rich fibrin versus beta-tri-calcium phosphate in the treatment of Grade II mandibular furcation defects using cone-beam computed tomography. Eur J Dent, 2016, 10(4): 496-506.
|
6. |
Yilmaz D, Dogan N, Ozkan A, et al. Effect of platelet rich fibrin and beta tricalcium phosphate on bone healing. A histological study in pigs. Acta Cir Bras, 2014, 29(1): 59-65.
|
7. |
毛俊丽, 孙勇, 赵峰, 等. 兔 PRF、A-PRF 制备方法的筛选. 西南国防医药, 2016, 26(6): 593-596.
|
8. |
Schmitz JP, Schwartz Z, Hollinger JO, et al. Characterization of rat calvarial nonunion defects. Acta Anat (Basel), 1990, 138(3): 185-192.
|
9. |
Betti LV, Bramante CM, Cestari TM, et al. Repair of rabbit femur defects with organic bovine bone cancellous block or cortical granules. Int J Oral Maxillofac Implants, 2011, 26(6): 1167-1175.
|
10. |
Gil-Albarova J, Vila M, Badiola-Vargas J, et al. In vivo osteointegration of three-dimensional crosslinked gelatin-coated hydroxyapatite foams. Acta Biomater, 2012, 8(10): 3777-3783.
|
11. |
Zheng H, Bai Y, Shih MS, et al. Effect of a β-TCP collagen composite bone substitute on healing of drilled bone voids in the distal femoral condyle of rabbits. J Biomed Mater Res B Appl Biomater, 2014, 102(2): 376-383.
|
12. |
Liu J, Mao K, Liu Z, et al. Injectable biocomposites for bone healing in rabbit femoral condyle defects. PLoS One, 2013, 8(10): e75668.
|
13. |
王军琳, 朱皓东, 马许宁, 等. 整体填充和颗粒填充 β-TCP 植骨材料对修复腔隙性骨缺损的影响. 现代生物医学进展, 2013, 13(9): 1648-1650.
|
14. |
于威, 李建军. 去抗原牛松质骨支架复合骨形态发生蛋白 2 基因在骨缺损修复过程中的血管化反应. 中国组织工程研究与临床康复, 2008, 12(23): 4559-4562.
|
15. |
殷建, 王斌, 朱超, 等. 局部注射促血管生成素2调控自噬促进体内组织工程人工骨早期血管化和骨缺损修复的研究. 中国修复重建外科杂志, 2018, 32(9): 1150-1156.
|
16. |
Gruber R, Varga F, Fischer MB, et al. Platelets stimulate proliferation of bone cells: in volvement of platelet-derived growth factor, microparticles and membranes. Clin Oral Implants Res, 2002, 13(5): 529-535.
|
17. |
Fujioka-Kobayashi M, Ota MS, Shimoda A, et al. Cholesteryl group- and acryloyl group-bearing pullulan nanogel to deliver BMP2 and FGF18 for bone tissue engineering. Biomaterials, 2012, 33(30): 7613-7620.
|
18. |
刘鹏鹤, 代志鹏, 赵甲军, 等. 自体血纤维蛋白凝块对前交叉韧带重建术后腱-骨愈合影响的临床研究. 中国修复重建外科杂志, 2017, 31(7): 799-804.
|
19. |
Will J, Melcher R, Treul C, et al. Porous ceramic bone scaffolds for vascularized bone tissue regeneration. J Mater Sci Mater Med, 2008, 19(8): 2781-2790.
|
20. |
Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005, 26(27): 5474-5491.
|
21. |
Amini AR, Adams DJ, Laurencin CT, et al. Optimally porous and biomechanically compatible scaffolds for large-area bone regeneration. Tissue Eng Part A, 2012, 18(13-14): 1376-1388.
|
22. |
Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater, 2013, 9(9): 8037-8045.
|
23. |
Denry I, Kuhn LT. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent Mater, 2016, 32(1): 43-53.
|
24. |
Li J, Baker BA, Mou X, et al. Biopolymer/Calcium phosphate scaffolds for bone tissue engineering. Adv Healthc Mater, 2014, 3(4): 469-484.
|
25. |
何婷婷. 两种富血小板纤维蛋白的降解特性研究. 泸州: 西南医科大学, 2017.
|