1. |
Gatti GL, Freda N, Giacomina A, et al. Cleft lip and palate repair. J Craniofac Surg, 2017, 28(8): 1918-1924.
|
2. |
Li C, Lan Y, Jiang R. Molecular and cellular mechanisms of palate development. J Dent Res, 2017, 96(11): 1184-1191.
|
3. |
Bush JO, Jiang R. Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development. Development, 2012, 139(2): 231-243.
|
4. |
Hammond NL, Brookes KJ, Dixon MJ. Ectopic hedgehog signaling causes cleft palate and defective osteogenesis. J Dent Res, 2018, 97(13): 1485-1493.
|
5. |
Yamada T, Hirata A, Sasabe E, et al. TCDD disrupts posterior palatogenesis and causes cleft palate. J Craniomaxillofac Surg, 2014, 42(1): 1-6.
|
6. |
王飞龙, 李多多, 黄鑫, 等. 高脂环境下微 RNA-29c-3p 靶向调节蓬乱蛋白 2 对大鼠骨髓间充质干细胞成骨分化的影响. 中华口腔医学杂志, 2018, 53(10): 694-700.
|
7. |
Schoen C, Aschrafi A, Thonissen M, et al. MicroRNAs in palatogenesis and cleft palate. Front Physiol, 2017, 8: 165.
|
8. |
Suzuki A, Abdallah N, Gajera M, et al. Genes and microRNAs associated with mouse cleft palate: A systematic review and bioinformatics analysis. Mech Dev, 2018, 150: 21-27.
|
9. |
Chen W, Sheng P, Huang Z, et al. MicroRNA-381 regulates chondrocyte hypertrophy by inhibiting histone deacetylase 4 expression. Int J Mol Sci, 2016, 17(9): 1377.
|
10. |
Kawai M, Herrmann D, Fuchs A, et al. Fgfr1 conditional-knockout in neural crest cells induces heterotopic chondrogenesis and osteogenesis in mouse frontal bones. Med Mol Morphol, 2018. DOI: 10.1007/s00795-018-0213-z.
|
11. |
Feng C, Xu Z, Li Z, et al. Down-regulation of Wnt10a by RNA interference inhibits proliferation and promotes apoptosis in mouse embryonic palatal mesenchymal cells through Wnt/beta-catenin signaling pathway. J Physiol Biochem, 2013, 69(4): 855-863.
|
12. |
Voigt A, Radlanski RJ, Sarioglu N, et al. Cleft lip and palate. Pathologe, 2017, 38(4): 241-247.
|
13. |
Shen J, Hung MC. Signaling-mediated regulation of MicroRNA processing. Cancer Res, 2015, 75(5): 783-791.
|
14. |
Ratnadiwakara M, Mohenska M, Änkö ML, et al. Splicing factors as regulators of miRNA biogenesis-links to human disease. Semin Cell Dev Biol, 2018, 79: 113-122.
|
15. |
Weiner AMJ. MicroRNAs and the neural crest: From induction to differentiation. Mech Dev, 2018, 154: 98-106.
|
16. |
Ries RJ, Yu W, Holton N, et al. Inhibition of the miR-17-92 cluster separates stages of palatogenesis. J Dent Res, 2017, 96(11): 1257-1264.
|
17. |
Warner D, Ding J, Mukhopadhyay P, et al. Temporal expression of miRNAs in laser capture microdissected palate medial edge epithelium from Tgfbeta3(–/–) mouse fetuses. Microrna, 2015, 4(1): 64-71.
|
18. |
彭建强, 黄年盛, 黄胜, 等. H2O2 下调 miR-21 对 MC3T3-E1 细胞成骨分化影响的研究. 中国修复重建外科杂志, 2018, 32(3): 276-284.
|
19. |
Hill CR, Jacobs BH, Brown CB, et al. Type Ⅲ transforming growth factor beta receptor regulates vascular and osteoblast development during palatogenesis. Dev Dyn, 2015, 244(2): 122-133.
|
20. |
Lei Z, Wang MH. Research progress of osteogenesis-related signaling pathways. Advances in Clinical Medicine, 2017, 7(4): 235-241.
|
21. |
Zhang S, Wang C, Xie C, et al. Disruption of hedgehog signaling by vismodegib leads to cleft palate and delayed osteogenesis in experimental design. J Craniofac Surg, 2017, 28(6): 1607-1614.
|
22. |
Watson AT, Planchart A, Mattingly CJ, et al. From the cover: embryonic exposure to TCDD impacts osteogenesis of the axial skeleton in Japanese Medaka, Oryzias latipes. Toxicol Sci, 2017, 155(2): 485-496.
|
23. |
Burns FR, Peterson RE, Heideman W. Dioxin disrupts cranial cartilage and dermal bone development in zebrafish larvae. Aquat Toxicol, 2015, 164: 52-60.
|