1. |
Pereira D, Ramos E, Branco J. Osteoarthritis. Acta Med Port, 2015, 28(1): 99-106.
|
2. |
Glyn-Jones S, Palmer AJ, Agricola R, et al. Osteoarthritis. Lancet, 2015, 386(9991): 376-387.
|
3. |
Fatica A, Bozzoni I. Long non-coding RNAs: New players in cell differentiation and development. Nat Rev Genet, 2014, 15(1): 7-21.
|
4. |
Jia D, Li Y, Han R, et al. miR-146a-5p expression is upregulated by the CXCR4 antagonist TN14003 and attenuates SDF-1-induced cartilage degradation. Mol Med Rep, 2019, 19(5): 4388-4400.
|
5. |
Jiang SD, Lu J, Deng ZH, et al. Long noncoding RNAs in osteoarthritis. Joint Bone Spine, 2017, 84(5): 553-556.
|
6. |
Romagnolo DF, Daniels KD, Grunwald JT, et al. Epigenetics of breast cancer: Modifying role of environmental and bioactive food compounds. Mol Nutr Food Res, 2016, 60(6): 1310-1329.
|
7. |
Chu C, Zhang QC, da Rocha ST, et al. Systematic discovery of Xist RNA binding proteins. Cell, 2015, 161(2): 404-416.
|
8. |
Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell, 2011, 43(6): 904-914.
|
9. |
Dahariya S, Paddibhatla I, Kumar S, et al. Long non-coding RNA: Classification, biogenesis and functions in blood cells. Mol Immunol, 2019, 112: 82-92.
|
10. |
Zhu J, Yu W, Wang Y, et al. lncRNAs: function and mechanism in cartilage development, degeneration, and regeneration. Stem Cell Res Ther, 2019, 10(1): 344.
|
11. |
Zhao C, Wang Y, Jin H, et al. Knockdown of microRNA-203 alleviates LPS-induced injury by targeting MCL-1 in C28/I2 chondrocytes. Exp Cell Res, 2017, 359(1): 171-178.
|
12. |
Luo X, Wang J, Wei X, et al. Knockdown of lncRNA MFI2-AS1 inhibits lipopolysaccha-ride-induced osteoarthritis progression by miR-130a-3p/TCF4. Life Sci, 2020, 240: 117019.
|
13. |
Cao L, Wang Y, Wang Q, et al. LncRNA FOXD2-AS1 regulates chondrocyte proliferation in osteoarthritis by acting as a sponge of miR-206 to modulate CCND1 expression. Biomed Pharmacother, 2018, 106: 1220-1226.
|
14. |
Xiao Y, Bao Y, Tang L, et al. LncRNA MIR4435-2HG is downregulated in osteoarthritis and regulates chondrocyte cell proliferation and apoptosis. J Orthop Surg Res, 2019, 14(1): 247.
|
15. |
Hu J, Wang Z, Shan Y, et al. Long non-coding RNA HOTAIR promotes osteoarthritis pro-gression via miR-17-5p/FUT2/beta-catenin axis. Cell Death Dis, 2018, 9(7): 711.
|
16. |
Yang Z, Tang Y, Lu H, et al. Long non-coding RNA reprogramming (lncRNA-ROR) regu-lates cell apoptosis and autophagy in chondrocytes. J Cell Biochem, 2018, 119(10): 8432-8440.
|
17. |
Fan X, Yuan J, Xie J, et al. Long non-protein coding RNA DANCR functions as a compet-ing endogenous RNA to regulate osteoarthritis progression via miR-577/SphK2 axis. Biochem Biophys Res Commun, 2018, 500(3): 658-664.
|
18. |
Liu Q, Zhang X, Dai L, et al. Long noncoding RNA related to cartilage injury promotes chondrocyte extracellular matrix degradation in osteoarthritis. Arthritis Rheumatol, 2014, 66(4): 969-978.
|
19. |
Wang T, Liu Y, Wang Y, et al. Long non-coding RNA XIST promotes extracellular matrix degradation by functioning as a competing endogenous RNA of miR-1277-5p in osteoarthri-tis. Int J Mol Med, 2019, 44(2): 630-642.
|
20. |
Kino T, Hurt DE, Ichijo T, et al. Noncoding RNA gas5 is a growth arrest-and starva-tion-associated repressor of the glucocorticoid receptor. Scie Signal, 2010, 3(107): ra8.
|
21. |
Song J, Ahn C, Chun CH, et al. A long non-coding RNA, GAS5, plays a critical role in the regulation of miR-21 during osteoarthritis. J Orthop Res, 2014, 32(12): 1628-1635.
|
22. |
Li X, Ren W, Xiao ZY, et al. GACAT3 promoted proliferation of osteoarthritis synoviocytes by IL-6/STAT3 signaling pathway. Eur Rev Med Pharmacol Sci, 2018, 22(16): 5114-5120.
|
23. |
Li X, Huang TL, Zhang GD, et al. LncRNA ANRIL impacts the progress of osteoarthritis via regulating proliferation and apoptosis of osteoarthritis synoviocytes. Eur Rev Med Pharmacol Sci, 2019, 23(22): 9729-9737.
|
24. |
Kang Y, Song J, Kim D, et al. PCGEM1 stimulates proliferation of osteoarthritic synoviocytes by acting as a sponge for miR-770. J Orthop Res, 2016, 34(3): 412-418.
|
25. |
Benetatos L, Vartholomatos G, Hatzimichael E. MEG3 imprinted gene contribution in tumor-igenesis. Int J Cancer, 2011, 129(4): 773-779.
|
26. |
Su W, Xie W, Shang Q, et al. The long noncoding RNA MEG3 is downregulated and inversely associated with VEGF levels in osteoarthritis. Biomed Res Int, 2015, 2015: 356893.
|
27. |
Song J, Huang S, Wang K, et al. Long non-coding RNA MEG3 attenuates the angiotensin II-induced injury of human umbilical vein endothelial cells by interacting with p53. Front Genet, 2019, 10: 78.
|
28. |
Shui X, Xie Q, Chen S, et al. Identification and functional analysis of long non-coding RNAs in the synovial membrane of osteoarthritis Patients. Cell Biochem Funct, 2020, 38(4): 460-471.
|
29. |
Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D. The role of inflammatory and an-ti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm, 2014, 2014: 561459.
|
30. |
Zheng J, Li Q. Methylene blue regulates inflammatory response in osteoarthritis by noncoding long chain RNA cILinc02. J Cell Biochem, 2019, 120(3): 3331-3338.
|
31. |
Hu Y, Li S, Zou Y. Knockdown of LncRNA H19 relieves LPS-induced damage by modulating miR-130a in osteoarthritis. Yonsei Med J, 2019, 60(4): 381-388.
|
32. |
Jahanban-Esfahlan R, Mehrzadi S, Reiter RJ, et al. Melatonin in regulation of inflammatory pathways in rheumatoid arthritis and osteoarthritis: Involvement of circadian clock genes. Br J Pharmacol, 2018, 175(16): 3230-3238.
|
33. |
Choi MC, Jo J, Park J, et al. NF-κB signaling pathways in osteoarthritic cartilage destruction. Cells, 2019, 8(7): 734.
|
34. |
Hu G, Gong AY, Wang Y, et al. LincRNA-Cox2 promotes late inflammatory gene transcription in macrophages through modulating SWI/SNF-mediated chromatin remodeling. J Immunol, 2016, 196(6): 2799-2808.
|
35. |
Sun T, Yu J, Han L, et al. Knockdown of long non-coding RNA RP11-445H22.4 alleviates LPS-induced injuries by regulation of MiR-301a in osteoarthritis. Cell Physiol Biochem, 2018, 45(2): 832-843.
|
36. |
Yang DW, Qian GB, Jiang MJ, et al. Inhibition of microRNA-495 suppresses chondrocyte apoptosis through activation of the NF-κB aignaling pathway by regulating CCL4 in osteoarthritis. Gene Ther, 2019, 26(6): 217-229.
|
37. |
Ewendt F, Föller M. p38MAPK controls fibroblast growth factor 23 (FGF23) synthesis in UMR106-osteoblast-like cells and in IDG-SW3 osteocytes. J Endocrinol Invest, 2019, 42(12): 1477-1483.
|
38. |
Lei J, Fu Y, Zhuang Y, et al. LncRNA SNHG1 alleviates IL-1beta-induced osteoarthritis by in-hibiting miR-16-5p-mediated p38 MAPK and NF-kappaB signaling pathways. Biosci Rep, 2019, 39(9): BSR20191523.
|
39. |
Murata K, Uchida K, Takano S, et al. Osteoarthritis patients with high haemoglobin A1c have increased toll-like receptor 4 and matrix metalloprotease-13 expression in the synovium. Diabetes Metab Syndr Obes, 2019, 12: 1151-1159.
|
40. |
Liu YD, Ji CB, Li SB, et al. Toll-like receptor 2 stimulation promotes colorectal cancer cell growth via PI3K/Akt and NF-κB signaling pathways. Int Immunopharmacol, 2018, 59: 375-383.
|
41. |
Liu YX, Wang GD, Wang X, et al. Effects of TLR-2/NF-κB signaling pathway on the occur-rence of degenerative knee osteoarthritis: An in vivo and in vitro study. Oncotarget, 2017, 8(24): 38602-38617.
|
42. |
Qin HJ, Xu T, Wu HT, et al. SDF-1/CXCR4 axis coordinates crosstalk between subchondral bone and articular cartilage in osteoarthritis pathogenesis. Bone, 2019, 125: 140-150.
|
43. |
Wei F, Moore DC, Wei L, et al. Attenuation of osteoarthritis via blockade of the SDF-1/CXCR4 signaling pathway. Arthritis Res Ther, 2012, 14(4): R177.
|
44. |
Wang K, Li Y, Han R, et al. T140 blocks the SDF-1/CXCR4 signaling pathway and prevents cartilage degeneration in an osteoarthritis disease model. PLoS One, 2017, 12(4): e0176048.
|