1. |
Liang F, Leland H, Jedrzejewski B, et al. Alternatives to autologous bone graft in alveolar cleft reconstruction: The state of alveolar tissue engineering. J Craniofac Surg, 2018, 29(3): 584-593.
|
2. |
Azi ML, Aprato A, Santi I, et al. Autologous bone graft in the treatment of post-traumatic bone defects: a systematic review and meta-analysis. BMC Musculoskelet Disord, 2016, 17(1): 465.
|
3. |
Lin K, Wu C, Chang J. Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater, 2014, 10(10): 4071-4102.
|
4. |
Santos PS, Cestari TM, Paulin JB, et al. Osteoinductive porous biphasic calcium phosphate ceramic as an alternative to autogenous bone grafting in the treatment of mandibular bone critical-size defects. J Biomed Mater Res B Appl Biomater, 2018, 106(4): 1546-1557.
|
5. |
Bouler JM, Pilet P, Gauthier O, et al. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomater, 2017, 53: 1-12.
|
6. |
Song G, Habibovic P, Bao C, et al. The homing of bone marrow MSCs to non-osseous sites for ectopic bone formation induced by osteoinductive calcium phosphate. Biomaterials, 2013, 34(9): 2167-2176.
|
7. |
陈浩东, 姚金凤, 梁志刚. 骨诱导性磷酸钙陶瓷材料修复牙槽突裂. 中国组织工程研究, 2016, 20(47): 7034-7042.
|
8. |
Guo X, Jiang H, Zong X, et al. The implication of the notch signaling pathway in biphasic calcium phosphate ceramic-induced ectopic bone formation: A preliminary experiment. J Biomed Mater Res A, 2020, 108(5): 1035-1044.
|
9. |
Puttini IO, Poli PP, Maiorana C, et al. Evaluation of osteoconduction of biphasic calcium phosphate ceramic in the calvaria of rats: Microscopic and histometric analysis. J Funct Biomater, 2019, 10(1): 7.
|
10. |
Cha JK, Kim C, Pae HC, et al. Maxillary sinus augmentation using biphasic calcium phosphate: dimensional stability results after 3-6 years. J Periodontal Implant Sci, 2019, 49(1): 47-57.
|
11. |
Fellah BH, Gauthier O, Weiss P, et al. Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials, 2008, 29(9): 1177-1188.
|
12. |
罗金超, 胡敏. 下颌骨缺损修复重建现状及研究进展. 中华整形外科杂志, 2012, 28(1): 78-80.
|
13. |
黄燕, 李小丹, 欧阳山蓓, 等. 自体骨、生物材料在颅颌面骨缺损修复中的应用研究. 中国美容医学, 2017, 26(8): 89-92.
|
14. |
Baldwin P, Li DJ, Auston DA, et al. Autograft, allograft, and bone graft substitutes: Clinical evidence and indications for use in the setting of orthopaedic trauma surgery. J Orthop Trauma, 2019, 33(4): 203-213.
|
15. |
Lobb DC, DeGeorge BR, Chhabra AB. Bone graft substitutes: Current concepts and future expectations. J Hand Surg (Am), 2019, 44(6): 497-505.
|
16. |
Ortiz-Puigpelat O, Elnayef B, Satorres-Nieto M, et al. Comparison of three biphasic calcium phosphate block substitutes: A histologic and histomorphometric analysis in the dog mandible. Int J Periodontics Restorative Dent, 2019, 39(3): 315-323.
|
17. |
Arinzeh TL, Tran T, Mcalary J, et al. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials, 2005, 26(17): 3631-3638.
|
18. |
Habibovic P, Yuan H, van der Valk CM, et al. 3D microenvi-ronment as essential element for osteoinduction by biomaterials. Biomaterials, 2005, 26(17): 3565-3575.
|
19. |
Kühne JH, Bartl R, Frisch B, et al. Bone formation in coralline hydroxyapatite. Effects of pore size studied in rabbits. Acta Orthop Scand, 1994, 65(3): 246-252.
|
20. |
Yuan H, de Bruijn JD, Zhang X, et al. Bone induction by porous glass ceramic made from Bioglass (45S5). J Biomed Mater Res, 2001, 58(3): 270-276.
|
21. |
Mangano FG, Iezzi G, Shibli JA, et al. Early bone formation around immediately loaded implants with nanostructured calcium-incorporated and machined surface: a randomized, controlled histologic and histomorphometric study in the human posterior maxilla. Clin Oral Investig, 2017, 21(8): 2603-2611.
|
22. |
Hanawa T, Kamiura Y, Yamamoto S, et al. Early bone formation around calcium-ion-implanted titanium inserted into rat tibia. J Biomed Mater Res, 1997, 36(1): 131-136.
|