1. |
de Ruiter GC, Spinner RJ, Verhaagen J, et al. Misdirection and guidance of regenerating axons after experimental nerve injury and repair. J Neurosurg, 2014, 120(2): 493-501.
|
2. |
顾立强, 裴国献. 周围神经损伤基础与临床. 北京: 人民军医出版社, 2001: 70-85.
|
3. |
Grafstein B. The nerve cell body response to axotomy. Exp Neurol, 1975, 48(3 pt. 2): 32-51.
|
4. |
Jessen KR, Mirsky R. The repair Schwann cell and its function in regenerating nerves. J Physiol, 2016, 594(13): 3521-3531.
|
5. |
Aguayo AJ, Epps J, Charron L, et al. Multipotentiality of Schwann cells in cross-anastomosed and grafted myelinated and unmyelinated nerves: quantitative microscopy and radioautography. Brain Res, 1976, 104(1): 1-20.
|
6. |
Kim HA, Mindos T, Parkinson DB. Plastic fantastic: Schwann cells and repair of the peripheral nervous system. Stem Cells Transl Med, 2013, 2(8): 553-557.
|
7. |
Sanders FK, Young JZ. The influence of peripheral connexion on the diameter of regenerating nerve fibres. J Exp Biol, 1946, 22: 203-212.
|
8. |
佟晓杰, 王振宇. 周围神经损伤和再生. 解剖科学进展, 1998, 4(1): 23-26.
|
9. |
彭徐云, 陶冶. 周围神经损伤修复的研究进展. 沈阳医学院学报, 2020, 22(2): 174-178.
|
10. |
Robinson GA, Madison RD. Motor neurons can preferentially reinnervate cutaneous pathways. Exp Neurol, 2004, 190(2): 407-413.
|
11. |
Martini R, Xin Y, Schmitz B, et al. The L2/HNK-1 carbohydrate epitope is involved in the preferential outgrowth of motor neurons on ventral roots and motor nerves. Eur J Neurosci, 1992, 4(7): 628-639.
|
12. |
Franz CK, Rutishauser U, Rafuse VF. Polysialylated neural cell adhesion molecule is necessary for selective targeting of regenerating motor neurons. J Neurosci, 2005, 25(8): 2081-2091.
|
13. |
Robinson GA, Madison RD. Developmentally regulated changes in femoral nerve regeneration in the mouse and rat. Exp Neurol, 2006, 197(2): 341-346.
|
14. |
Madison RD, Robinson GA, Chadaram SR. The specificity of motor neurone regeneration (preferential reinnervation). Acta Physiol (Oxf), 2007, 189(2): 201-206.
|
15. |
Maki Y, Yoshizu T, Tsubokawa N. Selective regeneration of motor and sensory axons in an experimental peripheral nerve model without endorgans. Scand J Plast Reconstr Surg Hand Surg, 2005, 39(5): 257-260.
|
16. |
Maki Y, Yoshizu T, Tajima T, et al. The selectivity of regenerating motor and sensory axons. J Reconstr Microsurg, 1996, 12(8): 547-551.
|
17. |
Jeppesen DK, Fenix AM, Franklin JL, et al. Reassessment of exosome composition. Cell, 2019, 177(2): 428-445.
|
18. |
Shah R, Patel T, Freedman JE. Circulating extracellular vesicles in human disease. N Engl J Med, 2018, 379(10): 958-966.
|
19. |
Acheson A, Lindsay RM. Non target-derived roles of the neurotrophins. Philos Trans R Soc Lond B Biol Sci, 1996, 351(1338): 417-422.
|
20. |
Buchman VL, Davies AM. Different neurotrophins are expressed and act in a developmental sequence to promote the survival of embryonic sensory neurons. Development, 1993, 118(3): 989-1001.
|
21. |
LeMaster AM, Krimm RF, Davis BM, et al. Overexpression of brain-derived neurotrophic factor enhances sensory innervation and selectively increases neuron number. J Neurosci, 1999, 19(14): 5919-5931.
|
22. |
Henderson CE, Camu W, Mettling C, et al. Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature, 1993, 363(6426): 266-270.
|
23. |
Santos D, González-Pérez F, Giudetti G, et al. Preferential enhancement of sensory and motor axon regeneration by combining extracellular matrix components with neurotrophic factors. Int J Mol Sci, 2016, 18(1): 65.
|
24. |
Jesuraj NJ, Nguyen PK, Wood MD, et al. Differential gene expression in motor and sensory Schwann cells in the rat femoral nerve. J Neurosci Res, 2012, 90(1): 96-104.
|
25. |
Höke A, Redett R, Hameed H, et al. Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci, 2006, 26(38): 9646-9655.
|
26. |
Jesuraj NJ, Santosa KB, Macewan MR, et al. Schwann cells seeded in acellular nerve grafts improve functional recovery. Muscle Nerve, 2014, 49(2): 267-276.
|
27. |
Tsubokawa N, Maki Y, Yoshizu T, et al. Comparison of the neurotropic effects of motor and sensory Schwann cells during regeneration of peripheral nerves. Scand J Plast Reconstr Surg Hand Surg, 1999, 33(4): 379-385.
|
28. |
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478): eaau6977.
|
29. |
Lopez-Verrilli MA, Picou F, Court FA. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia, 2013, 61(11): 1795-1806.
|
30. |
Simeoli R, Montague K, Jones HR, et al. Exosomal cargo including microRNA regulates sensory neuron to macrophage communication after nerve trauma. Nat Commun, 2017, 8(1): 1778.
|
31. |
Brushart TM. Preferential motor reinnervation: a sequential double-labeling study. Restor Neurol Neurosci, 1990, 1(3): 281-287.
|
32. |
Brushart TM, Gerber J, Kessens P, et al. Contributions of pathway and neuron to preferential motor reinnervation. J Neurosci, 1998, 18(21): 8674-8681.
|
33. |
Weiss P, Edds MV. Sensory-motor nerve crosses in the rat. J Neurophysiol, 1945, 30: 173-193.
|
34. |
Chiono V, Tonda-Turo C. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Prog Neurobiol, 2015, 131: 87-104.
|
35. |
Fields RD, Le Beau JM, Longo FM, et al. Nerve regeneration through artificial tubular implants. Prog Neurobiol, 1989, 33(2): 87-134.
|
36. |
Liu D, Mi DG, Zhang TJ, et al. Tubulation repair mitigates misdirection of regenerating motor axons across a sciatic nerve gap in rats. Sci Rep, 2018, 8(1): 3443.
|
37. |
Brushart TM, Mathur V, Sood R, et al. Dispersion of regenerating axons across enclosed neural gaps. J Hand Surg (Am), 1995, 20(4): 557-564.
|
38. |
Hu X, Cai J, Yang J, et al. Sensory axon targeting is increased by NGF gene therapy within the lesioned adult femoral nerve. Exp Neurol, 2010, 223(1): 153-165.
|
39. |
Al-Majed AA, Neumann CM, Brushart TM, et al. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci, 2000, 20(7): 2602-2608.
|
40. |
Bolívar S, Navarro X, Udina E. Schwann cell role in selectivity of nerve regeneration. Cells, 2020, 9(9): 2131.
|
41. |
Wang SF, Li PC, Xue YH, et al. Contralateral C7 nerve transfer with direct coaptation to restore lower trunk function after traumatic brachial plexus avulsion. J Bone Joint Surg (Am), 2013, 95(9): 821-827.
|