1. |
高坤, 朱文秀, 刘伟东, 等. 再生医学治疗新选择: 间充质干细胞来源的外泌体. 中国组织工程研究, 2019, 23(13): 2107-2112.
|
2. |
Luzuriaga J, Pastor-Alonso O, Encinas JM, et al. Human dental pulp stem cells grown in neurogenic media differentiate into endothelial cells and promote neovasculogenesis in the mouse brain. Front Physiol, 2019, 10: 347. doi: 10.3389/fphys.2019.00347.
|
3. |
El Moshy S, Radwan IA, Rady D, et al. Dental stem cell-derived secretome/conditioned medium: the future for regenerative therapeutic applications. Stem Cells Int, 2020, 2020: 7593402. doi: 10.1155/2020/7593402.
|
4. |
刘琼, 文军, 吴小明, 等. 体外培养乳牙牙髓干细胞向血管内皮细胞定向分化的实验研究. 中国现代医学杂志, 2019, 29(1): 29-34.
|
5. |
廖红兴, 张志辉, 刘展亮, 等. 低氧诱导因子1α与骨形态发生蛋白6协同过表达骨髓间充质干细胞在低氧环境下的成骨和成血管效应. 中国组织工程研究, 2019, 23(17): 2644-2650.
|
6. |
Jia P, Zuo GL, Zhang LF, et al. Dimethyloxalylglycine prevents bone loss in ovariectomized C57BL/6J mice through enhanced angiogenesis and osteogenesis. PLoS One, 2014, 9(11): e112744. doi: 10.1371/journal.pone.0112744.
|
7. |
Lengfeld JE, Lutz SE, Smith JR, et al. Endothelial Wnt/β-catenin signaling reduces immune cell infiltration in multiple sclerosis. Proc Natl Acad Sci U S A, 2017, 114(7): E1168-E1177.
|
8. |
Marchionni C, Bonsi L, Alviano F, et al. Angiogenic potential of human dental pulp stromal (stem) cells. Int J Immunopathol Pharmacol, 2009, 22(3): 699-706.
|
9. |
Grieco TM, Richman JM. Coordination of bilateral tooth replacement in the juvenile gecko is continuous with in ovo paterning. Evol Dev, 2018, 20(2): 51-64.
|
10. |
庞真贞, 王良, 高磊, 等. 人脱落乳牙牙髓干细胞与牙髓干细胞生物学功能差异研究. 中华老年口腔医学杂志, 2017, 15(4): 204-208.
|
11. |
周武. 内皮祖细胞的生物学性状及其治疗作用的研究进展. 东南大学学报 (医学版), 2014, 33(6): 783-787.
|
12. |
Dissanayaka WL, Han Y, Zhang L, et al. Bcl-2 overexpression and hypoxia synergistically enhance angiogenic properties of dental pulp stem cells. Int J Mol Sci, 2020, 21(17): 6159. doi: 10.3390/ijms21176159.
|
13. |
吴艳青, 张正红, 罗倩萍, 等. HIF-1在卵巢黄体发育过程中对血管新生的调控作用. 中国细胞生物学学报, 2012, 34(10): 1042-1048.
|
14. |
柏文华, 疏佳萍, 戴王娟, 等. 抑制低氧诱导因子1α分解对早产儿脑损伤模型中血管生成的影响. 东南大学学报 (医学版), 2019, 38(2): 265-268.
|
15. |
Jiang C, Sun J, Dai Y, et al. HIF-1A and C/EBPs transcriptionally regulate adipogenic differentiation of bone marrow-derived MSCs in hypoxia. Stem Cell Res Ther, 2015, 6(1): 21. doi: 10.1186/s13287-015-0014-4.
|
16. |
Zhang YG, Yang Z, Zhang H, et al. Effect of negative pressure on human bone marrow mesenchymal stem cells in vitro. Connect Tissue Res, 2010, 51(1): 14-21.
|
17. |
Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis. Development, 2018, 145(11): dev146589. doi: 10.1242/dev.146589.
|
18. |
Hu Y, Li X, Huang G, et al. Fasudil may induce the differentiation of bone marrow mesenchymal stem cells into neuron-like cells via the Wnt/β-catenin pathway. Mol Med Rep, 2019, 19(4): 3095-3104.
|
19. |
Li Z, Wang Y, Xiang S, et al. Chondrocytes-derived exosomal miR-8485 regulated the Wnt/β-catenin pathways to promote chondrogenic differentiation of BMSCs. Biochem Biophys Res Commun, 2020, 523(2): 506-513.
|
20. |
杨鑫, 李思洁, 赵玮. Wnt信号通路在调控牙髓干细胞多向分化及炎症损伤修复中的作用. 国际口腔医学杂志, 2018, 45(3): 286-290.
|
21. |
Zhang Z, Nör F, Oh M, et al. Wnt/β-catenin signaling determines the vasculogenic fate of postnatal mesenchymal stem cells. Stem Cells, 2016, 34(6): 1576-1587.
|