- 1. Nanjing University of Traditional Chinese Medicine, Nanjing Jiangsu, 210023, P.R.China;
- 2. Department of Orthopedics and Traumatology, Wuxi Affiliated Hospital, Nanjing University of Traditional Chinese Medicine, Wuxi Jiangsu, 214071, P.R.China;
- 3. Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215006, P.R.China;
Citation: PENG Hongcheng, HUA Zhen, YANG Huilin, WANG Jianwei. Research progress on mechanism of myokines regulating bone tissue cells. Chinese Journal of Reparative and Reconstructive Surgery, 2021, 35(7): 923-929. doi: 10.7507/1002-1892.202012062 Copy
1. | Avin KG, Bloomfield SA, Gross TS, et al. Biomechanical aspects of the muscle-bone interaction. Curr Osteoporos Rep, 2015, 13(1): 1-8. |
2. | Cianferotti L, Brandi ML. Muscle-bone interactions: basic and clinical aspects. Endocrine, 2014, 45(2): 165-177. |
3. | Elliott DS, Newman KJ, Forward DP, et al. A unified theory of bone healing and nonunion: BHN theory. Bone Joint J, 2016, 98-B(7): 884-891. |
4. | Thomopoulos S, Zampiakis E, Das R, et al. The effect of muscle loading on flexor tendon-to-bone healing in a canine model. J Orthop Res, 2008, 26(12): 1611-1617. |
5. | Hurtgen BJ, Ward CL, Garg K, et al. Severe muscle trauma triggers heightened and prolonged local musculoskeletal inflammation and impairs adjacent tibia fracture healing. J Musculoskelet Neuronal Interact, 2016, 16(2): 122-134. |
6. | Davis KM, Griffin KS, Chu TG, et al. Muscle-bone interactions during fracture healing. J Musculoskelet Neuronal Interact, 2015, 15(1): 1-9. |
7. | Edwards MH, Dennison EM, Aihie Sayer A, et al. Osteoporosis and sarcopenia in older age. Bone, 2015, 80: 126-130. |
8. | Bettis T, Kim BJ, Hamrick MW. Impact of muscle atrophy on bone metabolism and bone strength: implications for muscle-bone crosstalk with aging and disuse. Osteoporos Int, 2018, 29(8): 1713-1720. |
9. | Reiss J, Iglseder B, Alzner R, et al. Sarcopenia and osteoporosis are interrelated in geriatric inpatients. Z Gerontol Geriatr, 2019, 52(7): 688-693. |
10. | 中国老年学和老年医学学会骨质疏松分会肌肉、骨骼与骨质疏松学科组. 肌肉、骨骼与骨质疏松专家共识. 中国骨质疏松杂志, 2016, 22(10): 1221-1229. |
11. | Kaji H. Effects of myokines on bone. Bonekey Rep, 2016, 5: 826. doi: 10.1038/bonekey.2016.48. |
12. | Lara-Castillo N, Johnson ML. Bone-muscle mutual interactions. Curr Osteoporos Rep, 2020, 18(4): 408-421. |
13. | Kaji H. Linkage between muscle and bone: common catabolic signals resulting in osteoporosis and sarcopenia. Curr Opin Clin Nutr Metab Care, 2013, 16(3): 272-277. |
14. | Kawao N, Kaji H. Interactions between muscle tissues and bone metabolism. J Cell Biochem, 2015, 116(5): 687-695. |
15. | Bonewald L. Use it or lose it to age: a review of bone and muscle communication. Bone, 2019, 120: 212-218. |
16. | Karsenty G, Mera P. Molecular bases of the crosstalk between bone and muscle. Bone, 2018, 115: 43-49. |
17. | Kim JM, Lin C, Stavre Z, et al. Osteoblast-osteoclast communication and bone homeostasis. Cells, 2020, 9(9): 2073. https://doi.org/10.3390/cells9092073. |
18. | Zhang Y, Luo G, Yu X. Cellular communication in bone homeostasis and the related anti-osteoporotic drug development. Curr Med Chem, 2020, 27(7): 1151-1169. |
19. | Wu LF, Zhu DC, Wang BH, et al. Relative abundance of mature myostatin rather than total myostatin is negatively associated with bone mineral density in Chinese. J Cell Mol Med, 2018, 22(2): 1329-1336. |
20. | Yaden BC, Croy JE, Wang Y, et al. Follistatin: a novel therapeutic for the improvement of muscle regeneration. J Pharmacol Exp Ther, 2014, 349(2): 355-371. |
21. | Lodberg A, van der Eerden BCJ, Boers-Sijmons B, et al. A follistatin-based molecule increases muscle and bone mass without affecting the red blood cell count in mice. FASEB J, 2019, 33(5): 6001-6010. |
22. | Colaianni G, Cuscito C, Mongelli T, et al. Irisin enhances osteoblast differentiation in vitro. Int J Endocrinol, 2014, 2014: 902186. doi: 10.1155/2014/902186. |
23. | Luo Y, Ma Y, Qiao X, et al. Irisin ameliorates bone loss in ovariectomized mice. Climacteric, 2020, 23(5): 496-504. |
24. | Sun L, Su J, Wang M. Changes of serum IGF-1 and ET-1 levels in patients with osteoporosis and its clinical significance. Pak J Med Sci, 2019, 35(3): 691-695. |
25. | Rosset EM, Bradshaw AD. SPARC/osteonectin in mineralized tissue. Matrix Biol, 2016, 52-54: 78-87. |
26. | Shevroja E, Marques-Vidal P, Aubry-Rozier B, et al. Cohort profile: the osteoLaus study. Int J Epidemiol, 2019, 48(4): 1046-1047. |
27. | Hamrick MW, Shi X, Zhang W, et al. Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading. Bone, 2007, 40(6): 1544-1553. |
28. | Qin Y, Peng Y, Zhao W, et al. Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication. J Biol Chem, 2017, 292(26): 11021-11033. |
29. | Tang L, Kang Y, Sun S, et al. Inhibition of MSTN signal pathway may participate in LIPUS preventing bone loss in ovariectomized rats. J Bone Miner Metab, 2020, 38(1): 14-26. |
30. | Colaianni G, Cinti S, Colucci S, et al. Irisin and musculoskeletal health. Ann N Y Acad Sci, 2017, 1402(1): 5-9. |
31. | Chen X, Sun K, Zhao S, et al. Irisin promotes osteogenic differentiation of bone marrow mesenchymal stem cells by activating autophagy via the Wnt/β-catenin signal pathway. Cytokine, 2020, 136: 155292. doi: 10.1016/j.cyto.2020.155292. |
32. | Colaianni G, Cuscito C, Mongelli T, et al. The myokine irisin increases cortical bone mass. Proc Natl Acad Sci U S A, 2015, 112(39): 12157-12162. |
33. | Estell EG, Le PT, Vegting Y, et al. Irisin directly stimulates osteoclastogenesis and bone resorption in vitro and in vivo. Elife, 2020, 9: e58172. doi: 10.7554/eLife.58172. |
34. | Ma Y, Qiao X, Zeng R, et al. Irisin promotes proliferation but inhibits differentiation in osteoclast precursor cells. FASEB J, 2018, 17: fj201700983RR. doi: 10.1096/fj.201700983RR. |
35. | Zhong X, Sun X, Shan M, et al. The production, detection, and origin of irisin and its effect on bone cells. Int J Biol Macromol, 2021, 178: 316-324. |
36. | Zhang J, Huang X, Yu R, et al. Circulating irisin is linked to bone mineral density in geriatric Chinese men. Open Med (Wars), 2020, 15(1): 763-768. |
37. | Wu L, Zhang G, Guo C, et al. Intracellular Ca2+ signaling mediates IGF-1-induced osteogenic differentiation in bone marrow mesenchymal stem cells. Biochem Biophys Res Commun, 2020, 527(1): 200-206. |
38. | Partadiredja G, Karima N, Utami KP, et al. The effects of light and moderate intensity exercise on the femoral bone and cerebellum of d-galactose-exposed rats. Rejuvenation Res, 2019, 22(1): 20-30. |
39. | Pereira LJ, Macari S, Coimbra CC, et al. Aerobic and resistance training improve alveolar bone quality and interferes with bone-remodeling during orthodontic tooth movement in mice. Bone, 2020, 138: 115496. doi: 10.1016/j.bone.2020.115496. |
40. | Adhikary S, Choudhary D, Tripathi AK, et al. FGF-2 targets sclerostin in bone and myostatin in skeletal muscle to mitigate the deleterious effects of glucocorticoid on musculoskeletal degradation. Life Sci, 2019, 229: 261-276. |
41. | Nosho S, Tosa I, Ono M, et al. Distinct osteogenic potentials of BMP-2 and FGF-2 in extramedullary and medullary microenvironments. Int J Mol Sci, 2020, 21(21): 7967. doi: 10.3390/ijms21217967. |
42. | Wakabayashi H, Miyamura G, Nagao N, et al. Functional block of interleukin-6 reduces a bone pain marker but not bone loss in hindlimb-unloaded mice. Int J Mol Sci, 2020, 21(10): 3521. doi: 10.3390/ijms21103521. |
43. | Rose-John S. Interleukin-6 family cytokines. Cold Spring Harb Perspect Biol, 2018, 10(2): a028415. doi: 10.1101/cshperspect.a028415. |
44. | Du J, Yang J, He Z, et al. Osteoblast and osteoclast activity affect bone remodeling upon regulation by mechanical loading-induced leukemia inhibitory factor expression in osteocytes. Front Mol Biosci, 2020, 7: 585056. doi: 10.3389/fmolb.2020.585056. |
45. | Zhao JJ, Wu ZF, Yu YH, et al. Effects of interleukin-7/interleukin-7 receptor on RANKL-mediated osteoclast differentiation and ovariectomy-induced bone loss by regulating c-Fos/c-Jun pathway. J Cell Physiol, 2018, 233(9): 7182-7194. |
46. | Kim JH, Sim JH, Lee S, et al. Interleukin-7 induces osteoclast formation via STAT5, independent of receptor activator of NF-kappaB ligand. Front Immunol, 2017, 8: 1376. doi: 10.3389/fimmu.2017.01376. |
47. | Yeoh G, Barton S, Kaestner K. The international journal of biochemistry & cell biology. Preface. Int J Biochem Cell Biol, 2011, 43(2): 172. doi: 10.1016/j.biocel.2010.09.004. |
48. | Loro E, Ramaswamy G, Chandra A, et al. IL15RA is required for osteoblast function and bone mineralization. Bone, 2017, 103: 20-30. |
49. | Feng S, Madsen SH, Viller NN, et al. Interleukin-15-activated natural killer cells kill autologous osteoclasts via LFA-1, DNAM-1 and TRAIL, and inhibit osteoclast-mediated bone erosion in vitro. Immunology, 2015, 145(3): 367-379. |
50. | Xu L, Zheng L, Wang Z, et al. TNF-α-induced SOX5 upregulation is involved in the osteogenic differentiation of human bone marrow mesenchymal stem cells through KLF4 signal pathway. Mol Cells, 2018, 41(6): 575-581. |
51. | Metozzi A, Bonamassa L, Brandi G, et al. Endocrinology of bone/brain crosstalk. Expert Rev Endocrinol Metab, 2015, 10(2): 153-167. |
52. | Gong W, Liu Y, Wu Z, et al. Meteorin-like shows unique expression pattern in bone and its overexpression inhibits osteoblast differentiation. PLoS One, 2016, 11(10): e0164446. doi: 10.1371/journal.pone.0164446. |
53. | Chen X, Chen J, Xu D, et al. Effects of osteoglycin (OGN) on treating senile osteoporosis by regulating MSCs. BMC Musculoskelet Disord, 2017, 18(1): 423. doi: 10.1186/s12891-017-1779-7. |
54. | Tanaka K, Matsuomoto E, Higashimaki Y, et al. Role of osteoglycin in the linkage between muscle and bone. J Biol Chem, 2012, 287(15): 11616-11628. |
55. | Zhu XW, Ding K, Dai XY, et al. β-aminoisobutyric acid accelerates the proliferation and differentiation of MC3T3-E1 cells via moderate activation of ROS signaling. J Chin Med Assoc, 2018, 81(7): 611-618. |
56. | Kitase Y, Vallejo JA, Gutheil W, et al. β-aminoisobutyric acid, l-BAIBA, is a muscle-derived osteocyte survival factor. Cell Rep, 2018, 22(6): 1531-1544. |
57. | Hamrick MW, McGee-Lawrence ME. Blocking bone loss with l-BAIBA. Trends Endocrinol Metab, 2018, 29(5): 284-286. |
58. | Yang F, Jia Y, Sun Q, et al. Raloxifene improves TNF-α-induced osteogenic differentiation inhibition of bone marrow mesenchymal stem cells and alleviates osteoporosis. Exp Ther Med, 2020, 20(1): 309-314. |
59. | Shao BY, Wang L, Yu Y, et al. Effects of CD4+ T lymphocytes from ovariectomized mice on bone marrow mesenchymal stem cell proliferation and osteogenic differentiation. Exp Ther Med, 2020, 20(5): 84. doi: 10.3892/etm.2020.9212. |
60. | Du D, Zhou Z, Zhu L, et al. TNF-α suppresses osteogenic differentiation of MSCs by accelerating P2Y2 receptor in estrogen-deficiency induced osteoporosis. Bone, 2018, 117: 161-170. |
61. | Qiao XY, Nie Y, Ma Y, et al. Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Sci Rep, 2016, 6: 18732. doi: 10.1038/srep18732. |
62. | Colaianni G, Errede M, Sanesi L, et al. Irisin correlates positively with BMD in a cohort of older adult patients and downregulates the senescent Marker p21 in osteoblasts. J Bone Miner Res, 2021, 36(2): 305-314. |
63. | Wu Y, Jiang Y, Liu Q, et al. lncRNA H19 promotes matrix mineralization through up-regulating IGF1 by sponging miR-185-5p in osteoblasts. BMC Mol Cell Biol, 2019, 20(1): 48. doi: 10.1186/s12860-019-0230-3. |
64. | Zeng Q, Wang Y, Gao J, et al. miR-29b-3p regulated osteoblast differentiation via regulating IGF-1 secretion of mechanically stimulated osteocytes. Cell Mol Biol Lett, 2019, 24: 11. doi: 10.1186/s11658-019-0136-2. |
65. | Koide M, Kobayashi Y, Yamashita T, et al. Bone formation is coupled to resorption via suppression of sclerostin expression by osteoclasts. J Bone Miner Res, 2017, 32(10): 2074-2086. |
66. | Feng P, Zhang H, Zhang Z, et al. The interaction of MMP-2/B7-H3 in human osteoporosis. Clin Immunol, 2016, 162: 118-124. |
67. | Tanaka K, Matsumoto E, Higashimaki Y, et al. FAM5C is a soluble osteoblast differentiation factor linking muscle to bone. Biochem Biophys Res Commun, 2012, 418(1): 134-139. |
68. | Chen YS, Guo Q, Guo LJ, et al. GDF8 inhibits bone formation and promotes bone resorption in mice. Clin Exp Pharmacol Physiol, 2017, 44(4): 500-508. |
69. | Sabokbar A, Mahoney DJ, Hemingway F, et al. Non-canonical (RANKL-Independent) pathways of osteoclast differentiation and their role in musculoskeletal diseases. Clin Rev Allergy Immunol, 2016, 51(1): 16-26. |
70. | Amarasekara DS, Yun H, Kim S, et al. Regulation of osteoclast differentiation by cytokine networks. Immune Netw, 2018, 18(1): e8. doi: 10.4110/in.2018.18.e8. |
71. | Fischer J, Hans D, Lamy O, et al. “Inflammaging” and bone in the OsteoLaus cohort. Immun Ageing, 2020, 17: 5. doi: 10.1186/s12979-020-00177-x. |
72. | Yang XW, Wang XS, Cheng FB, et al. Elevated CCL2/MCP-1 levels are related to disease severity in postmenopausal osteoporotic Patients. Clin Lab, 2016, 62(11): 2173-2181. |
73. | Zheng X, Zhang Y, Guo S, et al. Dynamic expression of matrix metalloproteinases 2, 9 and 13 in ovariectomy-induced osteoporosis rats. Exp Ther Med, 2018, 16(3): 1807-1813. |
74. | Kim H, Wrann CD, Jedrychowski M, et al. Irisin mediates effects on bone and fat via αV integrin receptors. Cell, 2019, 178(2): 507-508. |
75. | Colaianni G, Sanesi L, Storlino G, et al. Irisin and bone: from preclinical studies to the evaluation of its circulating levels in different populations of human subjects. Cells, 2019, 8(5): 451. doi: 10.3390/cells8050451. |
76. | Bakker AD, Kulkarni RN, Klein-Nulend J, et al. IL-6 alters osteocyte signaling toward osteoblasts but not osteoclasts. J Dent Res, 2014, 93(4): 394-399. |
77. | Kitaura H, Marahleh A, Ohori F, et al. Osteocyte-related cytokines regulate osteoclast formation and bone resorption. Int J Mol Sci, 2020, 21(14): 5169. doi: 10.3390/ijms21145169. |
78. | Ohori F, Kitaura H, Marahleh A, et al. Effect of TNF-α-induced sclerostin on osteocytes during orthodontic tooth movement. J Immunol Res, 2019, 2019: 9716758. doi: 10.1155/2019/9716758. |
79. | Chiu HC, Chiu CY, Yang RS, et al. Preventing muscle wasting by osteoporosis drug alendronate in vitro and in myopathy models via sirtuin-3 down-regulation. J Cachexia Sarcopenia Muscle, 2018, 9(3): 585-602. |
- 1. Avin KG, Bloomfield SA, Gross TS, et al. Biomechanical aspects of the muscle-bone interaction. Curr Osteoporos Rep, 2015, 13(1): 1-8.
- 2. Cianferotti L, Brandi ML. Muscle-bone interactions: basic and clinical aspects. Endocrine, 2014, 45(2): 165-177.
- 3. Elliott DS, Newman KJ, Forward DP, et al. A unified theory of bone healing and nonunion: BHN theory. Bone Joint J, 2016, 98-B(7): 884-891.
- 4. Thomopoulos S, Zampiakis E, Das R, et al. The effect of muscle loading on flexor tendon-to-bone healing in a canine model. J Orthop Res, 2008, 26(12): 1611-1617.
- 5. Hurtgen BJ, Ward CL, Garg K, et al. Severe muscle trauma triggers heightened and prolonged local musculoskeletal inflammation and impairs adjacent tibia fracture healing. J Musculoskelet Neuronal Interact, 2016, 16(2): 122-134.
- 6. Davis KM, Griffin KS, Chu TG, et al. Muscle-bone interactions during fracture healing. J Musculoskelet Neuronal Interact, 2015, 15(1): 1-9.
- 7. Edwards MH, Dennison EM, Aihie Sayer A, et al. Osteoporosis and sarcopenia in older age. Bone, 2015, 80: 126-130.
- 8. Bettis T, Kim BJ, Hamrick MW. Impact of muscle atrophy on bone metabolism and bone strength: implications for muscle-bone crosstalk with aging and disuse. Osteoporos Int, 2018, 29(8): 1713-1720.
- 9. Reiss J, Iglseder B, Alzner R, et al. Sarcopenia and osteoporosis are interrelated in geriatric inpatients. Z Gerontol Geriatr, 2019, 52(7): 688-693.
- 10. 中国老年学和老年医学学会骨质疏松分会肌肉、骨骼与骨质疏松学科组. 肌肉、骨骼与骨质疏松专家共识. 中国骨质疏松杂志, 2016, 22(10): 1221-1229.
- 11. Kaji H. Effects of myokines on bone. Bonekey Rep, 2016, 5: 826. doi: 10.1038/bonekey.2016.48.
- 12. Lara-Castillo N, Johnson ML. Bone-muscle mutual interactions. Curr Osteoporos Rep, 2020, 18(4): 408-421.
- 13. Kaji H. Linkage between muscle and bone: common catabolic signals resulting in osteoporosis and sarcopenia. Curr Opin Clin Nutr Metab Care, 2013, 16(3): 272-277.
- 14. Kawao N, Kaji H. Interactions between muscle tissues and bone metabolism. J Cell Biochem, 2015, 116(5): 687-695.
- 15. Bonewald L. Use it or lose it to age: a review of bone and muscle communication. Bone, 2019, 120: 212-218.
- 16. Karsenty G, Mera P. Molecular bases of the crosstalk between bone and muscle. Bone, 2018, 115: 43-49.
- 17. Kim JM, Lin C, Stavre Z, et al. Osteoblast-osteoclast communication and bone homeostasis. Cells, 2020, 9(9): 2073. https://doi.org/10.3390/cells9092073.
- 18. Zhang Y, Luo G, Yu X. Cellular communication in bone homeostasis and the related anti-osteoporotic drug development. Curr Med Chem, 2020, 27(7): 1151-1169.
- 19. Wu LF, Zhu DC, Wang BH, et al. Relative abundance of mature myostatin rather than total myostatin is negatively associated with bone mineral density in Chinese. J Cell Mol Med, 2018, 22(2): 1329-1336.
- 20. Yaden BC, Croy JE, Wang Y, et al. Follistatin: a novel therapeutic for the improvement of muscle regeneration. J Pharmacol Exp Ther, 2014, 349(2): 355-371.
- 21. Lodberg A, van der Eerden BCJ, Boers-Sijmons B, et al. A follistatin-based molecule increases muscle and bone mass without affecting the red blood cell count in mice. FASEB J, 2019, 33(5): 6001-6010.
- 22. Colaianni G, Cuscito C, Mongelli T, et al. Irisin enhances osteoblast differentiation in vitro. Int J Endocrinol, 2014, 2014: 902186. doi: 10.1155/2014/902186.
- 23. Luo Y, Ma Y, Qiao X, et al. Irisin ameliorates bone loss in ovariectomized mice. Climacteric, 2020, 23(5): 496-504.
- 24. Sun L, Su J, Wang M. Changes of serum IGF-1 and ET-1 levels in patients with osteoporosis and its clinical significance. Pak J Med Sci, 2019, 35(3): 691-695.
- 25. Rosset EM, Bradshaw AD. SPARC/osteonectin in mineralized tissue. Matrix Biol, 2016, 52-54: 78-87.
- 26. Shevroja E, Marques-Vidal P, Aubry-Rozier B, et al. Cohort profile: the osteoLaus study. Int J Epidemiol, 2019, 48(4): 1046-1047.
- 27. Hamrick MW, Shi X, Zhang W, et al. Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading. Bone, 2007, 40(6): 1544-1553.
- 28. Qin Y, Peng Y, Zhao W, et al. Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication. J Biol Chem, 2017, 292(26): 11021-11033.
- 29. Tang L, Kang Y, Sun S, et al. Inhibition of MSTN signal pathway may participate in LIPUS preventing bone loss in ovariectomized rats. J Bone Miner Metab, 2020, 38(1): 14-26.
- 30. Colaianni G, Cinti S, Colucci S, et al. Irisin and musculoskeletal health. Ann N Y Acad Sci, 2017, 1402(1): 5-9.
- 31. Chen X, Sun K, Zhao S, et al. Irisin promotes osteogenic differentiation of bone marrow mesenchymal stem cells by activating autophagy via the Wnt/β-catenin signal pathway. Cytokine, 2020, 136: 155292. doi: 10.1016/j.cyto.2020.155292.
- 32. Colaianni G, Cuscito C, Mongelli T, et al. The myokine irisin increases cortical bone mass. Proc Natl Acad Sci U S A, 2015, 112(39): 12157-12162.
- 33. Estell EG, Le PT, Vegting Y, et al. Irisin directly stimulates osteoclastogenesis and bone resorption in vitro and in vivo. Elife, 2020, 9: e58172. doi: 10.7554/eLife.58172.
- 34. Ma Y, Qiao X, Zeng R, et al. Irisin promotes proliferation but inhibits differentiation in osteoclast precursor cells. FASEB J, 2018, 17: fj201700983RR. doi: 10.1096/fj.201700983RR.
- 35. Zhong X, Sun X, Shan M, et al. The production, detection, and origin of irisin and its effect on bone cells. Int J Biol Macromol, 2021, 178: 316-324.
- 36. Zhang J, Huang X, Yu R, et al. Circulating irisin is linked to bone mineral density in geriatric Chinese men. Open Med (Wars), 2020, 15(1): 763-768.
- 37. Wu L, Zhang G, Guo C, et al. Intracellular Ca2+ signaling mediates IGF-1-induced osteogenic differentiation in bone marrow mesenchymal stem cells. Biochem Biophys Res Commun, 2020, 527(1): 200-206.
- 38. Partadiredja G, Karima N, Utami KP, et al. The effects of light and moderate intensity exercise on the femoral bone and cerebellum of d-galactose-exposed rats. Rejuvenation Res, 2019, 22(1): 20-30.
- 39. Pereira LJ, Macari S, Coimbra CC, et al. Aerobic and resistance training improve alveolar bone quality and interferes with bone-remodeling during orthodontic tooth movement in mice. Bone, 2020, 138: 115496. doi: 10.1016/j.bone.2020.115496.
- 40. Adhikary S, Choudhary D, Tripathi AK, et al. FGF-2 targets sclerostin in bone and myostatin in skeletal muscle to mitigate the deleterious effects of glucocorticoid on musculoskeletal degradation. Life Sci, 2019, 229: 261-276.
- 41. Nosho S, Tosa I, Ono M, et al. Distinct osteogenic potentials of BMP-2 and FGF-2 in extramedullary and medullary microenvironments. Int J Mol Sci, 2020, 21(21): 7967. doi: 10.3390/ijms21217967.
- 42. Wakabayashi H, Miyamura G, Nagao N, et al. Functional block of interleukin-6 reduces a bone pain marker but not bone loss in hindlimb-unloaded mice. Int J Mol Sci, 2020, 21(10): 3521. doi: 10.3390/ijms21103521.
- 43. Rose-John S. Interleukin-6 family cytokines. Cold Spring Harb Perspect Biol, 2018, 10(2): a028415. doi: 10.1101/cshperspect.a028415.
- 44. Du J, Yang J, He Z, et al. Osteoblast and osteoclast activity affect bone remodeling upon regulation by mechanical loading-induced leukemia inhibitory factor expression in osteocytes. Front Mol Biosci, 2020, 7: 585056. doi: 10.3389/fmolb.2020.585056.
- 45. Zhao JJ, Wu ZF, Yu YH, et al. Effects of interleukin-7/interleukin-7 receptor on RANKL-mediated osteoclast differentiation and ovariectomy-induced bone loss by regulating c-Fos/c-Jun pathway. J Cell Physiol, 2018, 233(9): 7182-7194.
- 46. Kim JH, Sim JH, Lee S, et al. Interleukin-7 induces osteoclast formation via STAT5, independent of receptor activator of NF-kappaB ligand. Front Immunol, 2017, 8: 1376. doi: 10.3389/fimmu.2017.01376.
- 47. Yeoh G, Barton S, Kaestner K. The international journal of biochemistry & cell biology. Preface. Int J Biochem Cell Biol, 2011, 43(2): 172. doi: 10.1016/j.biocel.2010.09.004.
- 48. Loro E, Ramaswamy G, Chandra A, et al. IL15RA is required for osteoblast function and bone mineralization. Bone, 2017, 103: 20-30.
- 49. Feng S, Madsen SH, Viller NN, et al. Interleukin-15-activated natural killer cells kill autologous osteoclasts via LFA-1, DNAM-1 and TRAIL, and inhibit osteoclast-mediated bone erosion in vitro. Immunology, 2015, 145(3): 367-379.
- 50. Xu L, Zheng L, Wang Z, et al. TNF-α-induced SOX5 upregulation is involved in the osteogenic differentiation of human bone marrow mesenchymal stem cells through KLF4 signal pathway. Mol Cells, 2018, 41(6): 575-581.
- 51. Metozzi A, Bonamassa L, Brandi G, et al. Endocrinology of bone/brain crosstalk. Expert Rev Endocrinol Metab, 2015, 10(2): 153-167.
- 52. Gong W, Liu Y, Wu Z, et al. Meteorin-like shows unique expression pattern in bone and its overexpression inhibits osteoblast differentiation. PLoS One, 2016, 11(10): e0164446. doi: 10.1371/journal.pone.0164446.
- 53. Chen X, Chen J, Xu D, et al. Effects of osteoglycin (OGN) on treating senile osteoporosis by regulating MSCs. BMC Musculoskelet Disord, 2017, 18(1): 423. doi: 10.1186/s12891-017-1779-7.
- 54. Tanaka K, Matsuomoto E, Higashimaki Y, et al. Role of osteoglycin in the linkage between muscle and bone. J Biol Chem, 2012, 287(15): 11616-11628.
- 55. Zhu XW, Ding K, Dai XY, et al. β-aminoisobutyric acid accelerates the proliferation and differentiation of MC3T3-E1 cells via moderate activation of ROS signaling. J Chin Med Assoc, 2018, 81(7): 611-618.
- 56. Kitase Y, Vallejo JA, Gutheil W, et al. β-aminoisobutyric acid, l-BAIBA, is a muscle-derived osteocyte survival factor. Cell Rep, 2018, 22(6): 1531-1544.
- 57. Hamrick MW, McGee-Lawrence ME. Blocking bone loss with l-BAIBA. Trends Endocrinol Metab, 2018, 29(5): 284-286.
- 58. Yang F, Jia Y, Sun Q, et al. Raloxifene improves TNF-α-induced osteogenic differentiation inhibition of bone marrow mesenchymal stem cells and alleviates osteoporosis. Exp Ther Med, 2020, 20(1): 309-314.
- 59. Shao BY, Wang L, Yu Y, et al. Effects of CD4+ T lymphocytes from ovariectomized mice on bone marrow mesenchymal stem cell proliferation and osteogenic differentiation. Exp Ther Med, 2020, 20(5): 84. doi: 10.3892/etm.2020.9212.
- 60. Du D, Zhou Z, Zhu L, et al. TNF-α suppresses osteogenic differentiation of MSCs by accelerating P2Y2 receptor in estrogen-deficiency induced osteoporosis. Bone, 2018, 117: 161-170.
- 61. Qiao XY, Nie Y, Ma Y, et al. Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Sci Rep, 2016, 6: 18732. doi: 10.1038/srep18732.
- 62. Colaianni G, Errede M, Sanesi L, et al. Irisin correlates positively with BMD in a cohort of older adult patients and downregulates the senescent Marker p21 in osteoblasts. J Bone Miner Res, 2021, 36(2): 305-314.
- 63. Wu Y, Jiang Y, Liu Q, et al. lncRNA H19 promotes matrix mineralization through up-regulating IGF1 by sponging miR-185-5p in osteoblasts. BMC Mol Cell Biol, 2019, 20(1): 48. doi: 10.1186/s12860-019-0230-3.
- 64. Zeng Q, Wang Y, Gao J, et al. miR-29b-3p regulated osteoblast differentiation via regulating IGF-1 secretion of mechanically stimulated osteocytes. Cell Mol Biol Lett, 2019, 24: 11. doi: 10.1186/s11658-019-0136-2.
- 65. Koide M, Kobayashi Y, Yamashita T, et al. Bone formation is coupled to resorption via suppression of sclerostin expression by osteoclasts. J Bone Miner Res, 2017, 32(10): 2074-2086.
- 66. Feng P, Zhang H, Zhang Z, et al. The interaction of MMP-2/B7-H3 in human osteoporosis. Clin Immunol, 2016, 162: 118-124.
- 67. Tanaka K, Matsumoto E, Higashimaki Y, et al. FAM5C is a soluble osteoblast differentiation factor linking muscle to bone. Biochem Biophys Res Commun, 2012, 418(1): 134-139.
- 68. Chen YS, Guo Q, Guo LJ, et al. GDF8 inhibits bone formation and promotes bone resorption in mice. Clin Exp Pharmacol Physiol, 2017, 44(4): 500-508.
- 69. Sabokbar A, Mahoney DJ, Hemingway F, et al. Non-canonical (RANKL-Independent) pathways of osteoclast differentiation and their role in musculoskeletal diseases. Clin Rev Allergy Immunol, 2016, 51(1): 16-26.
- 70. Amarasekara DS, Yun H, Kim S, et al. Regulation of osteoclast differentiation by cytokine networks. Immune Netw, 2018, 18(1): e8. doi: 10.4110/in.2018.18.e8.
- 71. Fischer J, Hans D, Lamy O, et al. “Inflammaging” and bone in the OsteoLaus cohort. Immun Ageing, 2020, 17: 5. doi: 10.1186/s12979-020-00177-x.
- 72. Yang XW, Wang XS, Cheng FB, et al. Elevated CCL2/MCP-1 levels are related to disease severity in postmenopausal osteoporotic Patients. Clin Lab, 2016, 62(11): 2173-2181.
- 73. Zheng X, Zhang Y, Guo S, et al. Dynamic expression of matrix metalloproteinases 2, 9 and 13 in ovariectomy-induced osteoporosis rats. Exp Ther Med, 2018, 16(3): 1807-1813.
- 74. Kim H, Wrann CD, Jedrychowski M, et al. Irisin mediates effects on bone and fat via αV integrin receptors. Cell, 2019, 178(2): 507-508.
- 75. Colaianni G, Sanesi L, Storlino G, et al. Irisin and bone: from preclinical studies to the evaluation of its circulating levels in different populations of human subjects. Cells, 2019, 8(5): 451. doi: 10.3390/cells8050451.
- 76. Bakker AD, Kulkarni RN, Klein-Nulend J, et al. IL-6 alters osteocyte signaling toward osteoblasts but not osteoclasts. J Dent Res, 2014, 93(4): 394-399.
- 77. Kitaura H, Marahleh A, Ohori F, et al. Osteocyte-related cytokines regulate osteoclast formation and bone resorption. Int J Mol Sci, 2020, 21(14): 5169. doi: 10.3390/ijms21145169.
- 78. Ohori F, Kitaura H, Marahleh A, et al. Effect of TNF-α-induced sclerostin on osteocytes during orthodontic tooth movement. J Immunol Res, 2019, 2019: 9716758. doi: 10.1155/2019/9716758.
- 79. Chiu HC, Chiu CY, Yang RS, et al. Preventing muscle wasting by osteoporosis drug alendronate in vitro and in myopathy models via sirtuin-3 down-regulation. J Cachexia Sarcopenia Muscle, 2018, 9(3): 585-602.
-
Previous Article
Diagnosis and management of fat necrosis after autologous fat transplantation of breast -
Next Article
游离臀下动脉股后皮支供血股后内侧皮瓣乳房再造一例