1. |
Sharma P, Kumar P, Sharma R, et al. Tissue engineering; Current status & futuristic scope. J Med Life, 2019, 12(3): 225-229.
|
2. |
Langer R, Vacanti JP. Tissue engineering. Science, 1993, 260(5110): 920-926.
|
3. |
Moeini A, Pedram P, Makvandi P, et al. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review. Carbohydr Polym, 2020, 233: 115839. doi: 10.1016/j.carbpol.2020.115839.
|
4. |
Setayeshmehr M, Esfandiari E, Rafieinia M, et al. Hybrid and composite scaffolds based on extracellular matrices for cartilage tissue engineering. Tissue Eng Part B Rev, 2019, 25(3): 202-224.
|
5. |
Curtis KJ, Schiavi J, Mc Garrigle MJ, et al. Mechanical stimuli and matrix properties modulate cancer spheroid growth in three-dimensional gelatin culture. J R Soc Interface, 2020, 17(173): 20200568. doi: 10.1098/rsif.2020.0568.
|
6. |
Song Y, Soto J, Li S. Mechanical regulation of histone modifications and cell plasticity. Curr Opin Solid State Mater Sci, 2020, 24(6): 1268-1294.
|
7. |
Ahmed S, Chauhan VM, Ghaemmaghami AM, et al. New generation of bioreactors that advance extracellular matrix modelling and tissue engineering. Biotechnol Lett, 2019, 41(1): 1-25.
|
8. |
Mokhtari-Jafari F, Amoabediny G, Dehghan MM. Role of biomechanics in vascularization of tissue-engineered bones. J Biomech, 2020, 110: 109920. doi: 10.1016/j.jbiomech.2020.109920.
|
9. |
Selden C, Fuller B. Role of bioreactor technology in tissue engineering for clinical use and therapeutic target design. Bioengineering (Basel), 2018, 5(2): 32. doi: 10.3390/bioengineering5020032.
|
10. |
Dyment NA, Barrett JG, Awad HA, et al. A brief history of tendon and ligament bioreactors: Impact and future prospects. J Orthop Res, 2020, 38(11): 2318-2330.
|
11. |
Castro N, Ribeiro S, Fernandes MM, et al. Physically active bioreactors for tissue engineering applications. Adv Biosyst, 2020, 4(10): e2000125. doi: 10.1002/adbi.202000125.
|
12. |
Eghbali H, Nava MM, Mohebbi-Kalhori D, et al. Hollow fiber bioreactor technology for tissue engineering applications. Int J Artif Organs, 2016, 39(1): 1-15.
|
13. |
Sharma C, Malhotra D, Rathore AS. Review of computational fluid dynamics applications in biotechnology processes. Biotechnol Prog, 2011, 27(6): 1497-1510.
|
14. |
Pearce D, Fischer S, Huda F, et al. Applications of computer modeling and simulation in cartilage tissue engineering. Tissue Eng Regen Med, 2020, 17(1): 1-13.
|
15. |
Borys BS, Le A, Roberts EL, et al. Using computational fluid dynamics (CFD) modeling to understand murine embryonic stem cell aggregate size and pluripotency distributions in stirred suspension bioreactors. J Biotechnol, 2019, 304: 16-27.
|
16. |
Elsayed Y, Lekakou C, Tomlins P. Modeling, simulations, and optimization of smooth muscle cell tissue engineering for the production of vascular grafts. Biotechnol Bioeng, 2019, 116(6): 1509-1522.
|
17. |
Hossain MS, Chen XB, Bergstrom DJ. Investigation of the in vitro culture process for skeletal-tissue-engineered constructs using computational fluid dynamics and experimental methods. J Biomech Eng, 2012, 134(12): 121003. doi: 10.1115/1.4007952.
|
18. |
Pok S, Dhane DV, Madihally SV. Computational simulation modelling of bioreactor configurations for regenerating human bladder. Comput Methods Biomech Biomed Engin, 2013, 16(8): 840-851.
|
19. |
Amer M, Feng Y, Ramsey JD. Using CFD simulations and statistical analysis to correlate oxygen mass transfer coefficient to both geometrical parameters and operating conditions in a stirred-tank bioreactor. Biotechnol Prog, 2019, 35(3): e2785. doi: 10.1002/btpr.2785.
|
20. |
Wu Q, Yan X, Xiao K, et al. Optimization of membrane unit location in a full-scale membrane bioreactor using computational fluid dynamics. Bioresour Technol, 2018, 249: 402-409.
|
21. |
Zhao F, Melke J, Ito K, et al. A multiscale computational fluid dynamics approach to simulate the micro-fluidic environment within a tissue engineering scaffold with highly irregular pore geometry. Biomech Model Mechanobiol, 2019, 18(6): 1965-1977.
|
22. |
Ali D, Sen S. Computational fluid dynamics study of the effects of surface roughness on permeability and fluid flow-induced wall shear stress in scaffolds. Ann Biomed Eng, 2018, 46(12): 2023-2035.
|
23. |
Melke J, Zhao F, van Rietbergen B, et al. Localisation of mineralised tissue in a complex spinner flask environment correlates with predicted wall shear stress level localisation. Eur Cell Mater, 2018, 36: 57-68.
|
24. |
闫洪涛. 准静态平面均匀流场结构条件的优化及组织工程真皮和游离皮片培养效果的初步评价. 重庆: 陆军军医大学, 2019.
|
25. |
唐辉, 闫洪涛, 陈年, 等. 不同灌注流速对复方壳多糖组织工程真皮生长代谢的影响. 中华皮肤科杂志, 2016, 49(12): 865-870.
|
26. |
Vetsch JR, Betts DC, Müller R, et al. Flow velocity-driven differentiation of human mesenchymal stromal cells in silk fibroin scaffolds: A combined experimental and computational approach. PLoS One, 2017, 12(7): e180781. doi: 10.1371/journal.pone.0180781.
|
27. |
Chen L, Song W, Markel DC, et al. Flow perfusion culture of MC3T3-E1 osteogenic cells on gradient calcium polyphosphate scaffolds with different pore sizes. J Biomater Appl, 2016, 30(7): 908-918.
|
28. |
Hong JK, Madihally SV. Next generation of electrosprayed fibers for tissue regeneration. Tissue Eng Part B Rev, 2011, 17(2): 125-142.
|
29. |
Filipowska J, Reilly GC, Osyczka AM. A single short session of media perfusion induces osteogenesis in hBMSCs cultured in porous scaffolds, dependent on cell differentiation stage. Biotechnol Bioeng, 2016, 113(8): 1814-1824.
|
30. |
Abdallah MN, Abdollahi S, Laurenti M, et al. Scaffolds for epithelial tissue engineering customized in elastomeric molds. J Biomed Mater Res B Appl Biomater, 2018, 106(2): 880-890.
|
31. |
伍津津, 朱堂友. 皮肤组织工程学. 北京: 人民军医出版社, 2009: 59.
|
32. |
Ali D. Effect of scaffold architecture on cell seeding efficiency: A discrete phase model CFD analysis. Comput Biol Med, 2019, 109: 62-69.
|
33. |
Truscello S, Kerckhofs G, Van Bael S, et al. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study. Acta Biomater, 2012, 8(4): 1648-1658.
|
34. |
Patrachari AR, Podichetty JT, Madihally SV. Application of computational fluid dynamics in tissue engineering. J Biosci Bioeng, 2012, 114(2): 123-132.
|
35. |
Yaghoobi M, Hashemi-Najafabadi S, Soleimani M, et al. Osteogenic induction of human mesenchymal stem cells in multilayered electrospun scaffolds at different flow rates and configurations in a perfusion bioreactor. J Biosci Bioeng, 2019, 128(4): 495-503.
|
36. |
Sevastianov VI, Basok YB, Grigor’ev AM, et al. Formation of tissue-engineered construct of human cartilage tissue in a flow-through bioreactor. Bull Exp Biol Med, 2017, 164(2): 269-273.
|
37. |
Yan H, Tang H, Qiu W, et al. A new dynamic culture device suitable for rat skin culture. Cell Tissue Res, 2019, 375(3): 723-731.
|
38. |
Jossen V, Eibl R, Kraume M, et al. Growth behavior of human adipose tissue-derived stromal/stem cells at small scale: Numerical and experimental investigations. Bioengineering, 2018, 5(4): 106. doi: 10.3390/bioengineering5040106.
|
39. |
Liu D, Chua CK, Leong KF. A mathematical model for fluid shear-sensitive 3D tissue construct development. Biomech Model Mechanobiol, 2013, 12(1): 19-31.
|