1. |
Phull AR, Eo SH, Abbas Q, et al. Applications of chondrocyte-based cartilage engineering: An overview. Biomed Res Int, 2016, 2016: 1879837. doi: 10.1155/2016/1879837.
|
2. |
Zhang YS, Yue K, Aleman J, et al. 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng, 2017, 45(1): 148-163.
|
3. |
Matai I, Kaur G, Seyedsalehi A, et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 2020, 226: 119536. doi: 10.1016/j.biomaterials.2019.119536.
|
4. |
Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 2016, 76: 321-343.
|
5. |
Massa S, Sakr MA, Seo J, et al. Bioprinted 3D vascularized tissue model for drug toxicity analysis. Biomicrofluidics, 2017, 11(4): 044109. doi: 10.1063/1.4994708.
|
6. |
Kuss MA, Wu S, Wang Y, et al. Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture. J Biomed Mater Res B Appl Biomater, 2018, 106(5): 1788-1798.
|
7. |
宋杨, 王晓飞, 王宇光, 等. 人脂肪间充质干细胞与生物材料共混物三维打印体的体内成骨. 北京大学学报 (医学版), 2016, 48(1): 45-50.
|
8. |
Tasnim N, De la Vega L, Anil Kumar S, et al. 3D bioprinting stem cell derived tissues. Cell Mol Bioeng, 2018, 11(4): 219-240.
|
9. |
Câmara DAD, Shibli JA, Müller EA, et al. Adipose tissue-derived stem cells: The biologic basis and future directions for tissue engineering. Materials (Basel), 2020, 13(14): 3210. doi: 10.3390/ma13143210.
|
10. |
Yue K, Trujillo-de Santiago G, Alvarez MM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 2015, 73: 254-271.
|
11. |
罗春阳, 刘杨, 张啸, 等. 应用明胶甲基丙烯酰胺低温3D打印组织工程软骨. 南京医科大学学报 (自然科学版), 2020, 40(4): 533-537.
|
12. |
Wilkes GH, Wong J, Guilfoyle R. Microtia reconstruction. Plast Reconstr Surg, 2014, 134(3): 464e-479e.
|
13. |
Kilian D, Ahlfeld T, Akkineni AR, et al. 3D Bioprinting of osteochondral tissue substitutes-in vitro-chondrogenesis in multi-layered mineralized constructs. Sci Rep, 2020, 10(1): 8277. doi: 10.1038/s41598-020-65050-9.
|
14. |
Mouser VH, Melchels FP, Visser J, et al. Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting. Biofabrication, 2016, 8(3): 035003. doi: 10.1088/1758-5090/8/3/035003.
|
15. |
Loessner D, Meinert C, Kaemmerer E, et al. Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Nat Protoc, 2016, 11(4): 727-746.
|
16. |
Daly AC, Critchley SE, Rencsok EM, et al. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication, 2016, 8(4): 045002. doi: 10.1088/1758-5090/8/4/045002.
|
17. |
Gu Y, Zhang L, Du X, et al. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. J Biomater Appl, 2018, 33(5): 609-618.
|
18. |
De Moor L, Fernandez S, Vercruysse C, et al. Hybrid bioprinting of chondrogenically induced human mesenchymal stem cell spheroids. Front Bioeng Biotechnol, 2020, 8: 484. doi: 10.3389/fbioe.2020.00484.
|
19. |
Zheng CX, Sui BD, Liu N, et al. Adipose mesenchymal stem cells from osteoporotic donors preserve functionality and modulate systemic inflammatory microenvironment in osteoporotic cytotherapy. Sci Rep, 2018, 8(1): 5215. doi: 10.1038/s41598-018-23098-8.
|
20. |
Li CY, Wu XY, Tong JB, et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther, 2015, 6(1): 55. doi: 10.1186/s13287-015-0066-5.
|
21. |
Billiet T, Gevaert E, De Schryver T, et al. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, 2014, 35(1): 49-62.
|
22. |
Luo C, Xie R, Zhang J, et al. Low-temperature three-dimensional printing of tissue cartilage engineered with gelatin methacrylamide. Tissue Eng Part C Methods, 2020, 26(6): 306-316.
|
23. |
Kosik-Kozioł A, Costantini M, Mróz A, et al. 3D bioprinted hydrogel model incorporating β-tricalcium phosphate for calcified cartilage tissue engineering. Biofabrication, 2019, 11(3): 035016. doi: 10.1088/1758-5090/ab15cb.
|
24. |
Nguyen D, Hägg DA, Forsman A, et al. Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci Rep, 2017, 7(1): 658. doi: 10.1038/s41598-017-00690-y.
|
25. |
Kolan KCR, Semon JA, Bromet B, et al. Bioprinting with human stem cell-laden alginate-gelatin bioink and bioactive glass for tissue engineering. Int J Bioprint, 2019, 5(2.2): 204. doi: 10.18063/ijb.v5i2.2.204.
|
26. |
Olate-Moya F, Arens L, Wilhelm M, et al. Chondroinductive alginate-based hydrogels having graphene oxide for 3D printed scaffold fabrication. ACS Appl Mater Interfaces, 2020, 12(4): 4343-4357.
|