1. |
Valkering KP, Breugem SJ, van den Bekerom MP, et al. Effect of rotational alignment on outcome of total knee arthroplasty. Acta Orthop, 2015, 86(4): 432-439.
|
2. |
Castelli CC, Falvo DA, Iapicca ML, et al. Rotational alignment of the femoral component in total knee arthroplasty. Ann Transl Med, 2016, 4(1): 4. doi: 10.3978/j.issn.2305-5839.2015.12.66.
|
3. |
Kim CW, Lee CR, Gwak HC, et al. The effects of surgical technique in total knee arthroplasty for varus osteoarthritic knee on the rotational alignment of femoral component: gap balancing technique versus measured resection technique. J Knee Surg, 2020, 33(2): 144-151.
|
4. |
Jabalameli M, Moradi A, Bagherifard A, et al. Evaluation of distal femoral rotational alignment with spiral CT scan before total knee arthroplasty (a study in Iranian population). Arch Bone Jt Surg, 2016, 4(2): 122-127.
|
5. |
Alcelik IA, Blomfield MI, Diana G, et al. A comparison of short-term outcomes of minimally invasive computer-assisted vs minimally invasive conventional instrumentation for primary total knee arthroplasty: a systematic review and meta-analysis. J Arthroplasty, 2016, 31(2): 410-418.
|
6. |
Gao YH, Li SQ, Yang C, et al. Favorable femoral component rotation achieved in severe varus deformity by using the gap-balancing technique. Knee, 2016, 23(5): 867-870.
|
7. |
Mason JB, Fehring TK, Estok R, et al. Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery. J Arthroplasty, 2007, 22(8): 1097-1106.
|
8. |
Ma Y, Mizu-Uchi H, Okazaki K, et al. Effects of tibial baseplate shape on rotational alignment in total knee arthroplasty: three-dimensional surgical simulation using osteoarthritis knees. Arch Orthop Trauma Surg, 2018, 138(1): 105-114.
|
9. |
孙茂淋, 何锐, 陈光兴, 等. 3D打印导航模板在全膝关节置换术中的应用. 中华骨与关节外科杂志, 2019, 12(3): 195-200.
|
10. |
DiGioia AM, Jaramaz B, Blackwell M, et al. The Otto Aufranc Award. Image guided navigation system to measure intraoperatively acetabular implant alignment. Clin Orthop Relat Res, 1998, (355): 8-22.
|
11. |
DiGioia AM, Jaramaz B, Colgan BD. Computer assisted orthopaedic surgery. Image guided and robotic assistive technologies. Clin Orthop Relat Res, 1998, (354): 8-16.
|
12. |
Bargar WL. Robots in orthopaedic surgery: past, present, and future. Clin Orthop Relat Res, 2007, 463: 31-36.
|
13. |
Vermue H, Luyckx T, Winnock de Grave P, et al. Robot-assisted total knee arthroplasty is associated with a learning curve for surgical time but not for component alignment, limb alignment and gap balancing. Knee Surg Sports Traumatol Arthrosc, 2020. doi: 10.1007/s00167-020-06341-6.
|
14. |
van der List JP, Chawla H, Joskowicz L, et al. Current state of computer navigation and robotics in unicompartmental and total knee arthroplasty: a systematic review with meta-analysis. Knee Surg Sports Traumatol Arthrosc, 2016, 24(11): 3482-3495.
|
15. |
Ofa SA, Ross BJ, Flick TR, et al. Robotic total knee arthroplasty vs conventional total knee arthroplasty: A nationwide database study. Arthroplast Today, 2020, 6(4): 1001-1008.
|
16. |
Onggo JR, Onggo JD, De Steiger R, et al. Robotic-assisted total knee arthroplasty is comparable to conventional total knee arthroplasty: a meta-analysis and systematic review. Arch Orthop Trauma Surg, 2020, 140(10): 1533-1549.
|
17. |
Hampp EL, Chughtai M, Scholl LY, et al. Robotic-arm assisted total knee arthroplasty demonstrated greater accuracy and precision to plan compared with manual techniques. J Knee Surg, 2019, 32(3): 239-250.
|
18. |
Marchand RC, Sodhi N, Khlopas A, et al. Coronal correction for severe deformity using robotic-assisted total knee arthroplasty. J Knee Surg, 2018, 31(1): 2-5.
|
19. |
Yang HY, Seon JK, Shin YJ, et al. Robotic total knee arthroplasty with a cruciate-retaining implant: A 10-year follow-up study. Clin Orthop Surg, 2017, 9(2): 169-176.
|
20. |
Suero EM, Plaskos C, Dixon PL, et al. Adjustable cutting blocks improve alignment and surgical time in computer-assisted total knee replacement. Knee Surg Sports Traumatol Arthrosc, 2012, 20(9): 1736-1741.
|
21. |
Khlopas A, Chughtai M, Hampp EL, et al. Robotic-arm assisted total knee arthroplasty demonstrated soft tissue protection. Surg Technol Int, 2017, 30: 441-446.
|
22. |
Siebert W, Mai S, Kober R, et al. Technique and first clinical results of robot-assisted total knee replacement. Knee, 2002, 9(3): 173-180.
|
23. |
Sultan AA, Piuzzi N, Khlopas A, et al. Utilization of robotic-arm assisted total knee arthroplasty for soft tissue protection. Expert Rev Med Devices, 2017, 14(12): 925-927.
|
24. |
Liow MHL, Goh GS, Wong MK, et al. Robotic-assisted total knee arthroplasty may lead to improvement in quality-of-life measures: a 2-year follow-up of a prospective randomized trial. Knee Surg Sports Traumatol Arthrosc, 2017, 25(9): 2942-2951.
|
25. |
Naziri Q, Burekhovich SA, Mixa PJ, et al. The trends in robotic-assisted knee arthroplasty: A statewide database study. J Orthop, 2019, 16(3): 298-301.
|
26. |
Marchand RC, Sodhi N, Khlopas A, et al. Patient satisfaction outcomes after robotic arm-assisted total knee arthroplasty: A short-term evaluation. J Knee Surg, 2017, 30(9): 849-853.
|
27. |
Liow MH, Xia Z, Wong MK, et al. Robot-assisted total knee arthroplasty accurately restores the joint line and mechanical axis. A prospective randomised study. J Arthroplasty, 2014, 29(12): 2373-2377.
|
28. |
Kim KI, Song SJ, Jeon SW. Response to letter to the editor on “robot-assisted total knee arthroplasty does not improve long-term clinical and radiologic outcomes”. J Arthroplasty, 2019, 34(10): 2521-2522.
|
29. |
Kim KI, Kim DK, Juh HS, et al. Robot-assisted total knee arthroplasty in haemophilic arthropathy. Haemophilia, 2016, 22(3): 446-452.
|
30. |
Sodhi N, Khlopas A, Piuzzi NS, et al. Erratum to: The learning curve associated with robotic total knee arthroplasty. J Knee Surg, 2018, 31(4): 370. doi: 10.1055/s-0038-1635082.
|
31. |
Sodhi N, Khlopas A, Piuzzi NS, et al. The learning curve associated with robotic total knee arthroplasty. J Knee Surg, 2018, 31(1): 17-21.
|
32. |
Vaidya NV, Deshpande AN, Panjwani T, et al. Robotic-assisted TKA leads to a better prosthesis alignment and a better joint line restoration as compared to conventional TKA: a prospective randomized controlled trial. Knee Surg Sports Traumatol Arthrosc, 2020. doi: 10.1007/s00167-020-06353-2.
|
33. |
Song EK, Seon JK, Yim JH, et al. Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA. Clin Orthop Relat Res, 2013, 471(1): 118-126.
|