1. |
Dabas Y, Xess I, Kale P. Molecular and antifungal susceptibility study on trichosporonemia and emergence of Trichosporon mycotoxinivorans as a bloodstream pathogen. Med Mycol, 2017, 55(5): 518-527.
|
2. |
Jung P, Mischo CE, Gunaratnam G, et al. Candida albicans adhesion to central venous catheters: Impact of blood plasma-driven germ tube formation and pathogen-derived adhesins. Virulence, 2020, 11(1): 1453-1465.
|
3. |
Tsui C, Kong EF, Jabra-Rizk MA. Pathogenesis of Candida albicans biofilm. Pathog Dis, 2016, 74(4): ftw018. doi: 10.1093/femspd/ftw018.
|
4. |
Holt JE, Houston A, Adams C, et al. Role of extracellular polymeric substances in polymicrobial biofilm infections of Staphylococcus epidermidis and Candida albicans modelled in the nematode Caenorhabditis elegans. Pathog Dis, 2017, 75(5): ftx052. doi: 10.1093/femspd/ftx052.
|
5. |
Schilcher K, Horswill AR. Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiol Mol Biol Rev, 2020, 84(3): e00026-19. doi: 10.1128/MMBR.00026-19.
|
6. |
Valle J, Solano C, García B, et al. Biofilm switch and immune response determinants at early stages of infection. Trends Microbiol, 2013, 21(8): 364-371.
|
7. |
陈雅, 叶联华, 黄云超. 葡萄球菌生物膜形成影响因素的研究进展. 中国医药导报, 2017, 14(36): 37-42.
|
8. |
陈鹏, 李波, 彭智, 等. ica操纵子对表皮葡萄球菌在不同骨科植入物表面黏附和生物膜形成的影响. 重庆医学, 2018, 47(17): 2275-2278, 2284.
|
9. |
叶联华, 黄云超, 杨达宽, 等. 表皮葡萄球菌ica操纵子与聚氯乙烯材料表面细菌生物膜形成的关系. 中华医院感染学杂志, 2010, 20(24): 3841-3843.
|
10. |
Mirzaei B, Faridifar P, Shahmoradi M, et al. Genotypic and phenotypic analysis of biofilm formation Staphylococcus epidermidis isolates from clinical specimens. BMC Res Notes, 2020, 13(1): 114. doi: 10.1186/s13104-020-04965-y.
|
11. |
Carolus H, Van Dyck K, Van Dijck P. Candida albicans and Staphylococcus species: A threatening twosome. Front Microbiol, 2019, 10: 2162. doi: 10.3389/fmicb.2019.02162.
|
12. |
申友亮, 朱同娥, 张靖靖, 等. 构建膝关节假体感染兔模型: 体内环境因素对表皮葡萄球菌及生物膜的影响. 中国组织工程研究, 2015, 19(39): 6240-6245.
|
13. |
徐晓耘, 袁咏梅, 陈晓君, 等. 呼吸机相关性肺炎患者血清IL-8, TNF-α, MCP-1的变化. 中华医院感染学杂志, 2020, 30(17): 2624-2627.
|
14. |
黄云超, 张尔永, 石应康, 等. 兔体内细菌对人工心脏瓣膜的粘附及清除研究. 生物医学工程与临床, 2004, 8(2): 61-64.
|
15. |
黄筱雪, 李燕. 白假丝酵母生物膜研究进展. 中华医院感染学杂志, 2019, 29(21): 3350-3354.
|
16. |
隋明亮, 吴长江, 黄超发, 等. 降钙素原和白介素6对危重患者导管相关性血行感染的早期诊断及预后价值. 上海交通大学学报 (医学版), 2013, 33(11): 1491-1495.
|
17. |
Dai L, Yang L, Parsons C, et al. Staphylococcus epidermidis recovered from indwelling catheters exhibit enhanced biofilm dispersal and “self-renewal” through downregulation of agr. BMC Microbiol, 2012, 12: 102. doi: 10.1186/1471-2180-12-102.
|
18. |
Pammi M, Liang R, Hicks J, et al. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans. BMC Microbiol, 2013, 13: 257. doi: 10.1186/1471-2180-13-257.
|
19. |
Vila T, Kong EF, Montelongo-Jauregui D, et al. Therapeutic implications of C.albicans-S.aureus mixed biofilm in a murine subcutaneous catheter model of polymicrobial infection. Virulence, 2021, 12(1): 835-851.
|
20. |
Nogueira F, Sharghi S, Kuchler K, et al. Pathogenetic impact of bacterial-fungal interactions. Microorganisms, 2019, 7(10): 459. doi: 10.3390/microorganisms7100459.
|
21. |
Pichard DC, Freeman AF, Cowen EW. Primary immunodeficiency update: Part Ⅱ. Syndromes associated with mucocutaneous candidiasis and noninfectious cutaneous manifestations. J Am Acad Dermatol, 2015, 73(3): 367-381.
|
22. |
d’Enfert C, Kaune AK, Alaban LR, et al. The impact of the fungus-host-microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev, 2021, 45(3): fuaa060. doi: 10.1093/femsre/fuaa060.
|
23. |
阮文鹏. 表皮葡萄球菌agrC特异结合多肽对大鼠中心静脉插管感染作用研究. 昆明: 昆明医科大学, 2018.
|
24. |
Bergeron AC, Seman BG, Hammond JH, et al. Candida albicans and Pseudomonas aeruginosa interact to enhance virulence of mucosal infection in transparent zebrafish. Infect Immun, 2017, 85(11): e00475-417. doi: 10.1128/IAI.00475-17.
|
25. |
Lianhua Y, Yunchao H, Guangqiang Z, et al. The effect of iatrogenic Staphylococcus epidermidis intercellar adhesion operon on the formation of bacterial biofilm on polyvinyl chloride surfaces. Surg Infect (Larchmt), 2014, 15(6): 768-773.
|
26. |
Cue D, Lei MG, Lee CY. Genetic regulation of the intercellular adhesion locus in staphylococci. Front Cell Infect Microbiol, 2012, 2: 38. doi: 10.3389/fcimb.2012.00038.
|
27. |
Nguyen HTT, Nguyen TH, Otto M. The staphylococcal exopolysaccharide PIA—Biosynthesis and role in biofilm formation, colonization, and infection. Comput Struct Biotechnol J, 2020, 18: 3324-3334.
|
28. |
Rowe SE, Campbell C, Lowry C, et al. AraC-type regulator Rbf controls the Staphylococcus epidermidis biofilm phenotype by negatively regulating the icaADBC repressor SarR. J Bacteriol, 2016, 198(21): 2914-2924.
|
29. |
覃凤兰. 呼吸机相关性肺炎的微生物学与炎症指标的分析. 南宁: 广西医科大学, 2019.
|
30. |
Cherifi S, Byl B, Deplano A, et al. Comparative epidemiology of Staphylococcus epidermidis isolates from patients with catheter-related bacteremia and from healthy volunteers. J Clin Microbiol, 2013, 51(5): 1541-1547.
|