• Department of Sports Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Yunnan, 650032, P. R. China;
LI Yanlin, Email: 852387873@qq.com
Export PDF Favorites Scan Get Citation

Objective  To establish a three-dimensional finite element analysis model of the knee joint in fresh frozen cadavers, to verify the validity of the model and to simulate the stress distribution characteristics of the patellofemoral joint after combined proximal and distal knee extension rearrangement surgery for recurrent patellar dislocation. Methods  One male and one female fresh frozen cadavers (4 knees in total), using voluntary body donations, were used to measure the maximum pressure on the patellofemoral articular surface at each passive flexion angle (0°, 30°, 60°, 90°, 120°) of the normal knee joint and the model after combined proximal and distal knee extension rearrangement surgery for recurrent patellar dislocation with tibial tuberosity-trochlear groove distance (TT-TG) value >2.00 cm using pressure-sensitive paper, respectively. Then, the 2 freshly frozen cadavers were used to construct three-dimensional finite element models of normal knee joints and postoperative knee joints, and the maximum pressure on the patellofemoral articular surface was measured at various passive flexion angles. The maximum pressure was compared with the measurement results of the pressure-sensitive paper to verify the validity of the three-dimensional finite element model. In addition, the maximum pressure on the patellofemoral joint surface measured by three-dimensional finite element was compared between the normal knee joint and the postoperative knee joint at various passive flexion angles, so as to obtain an effective three-dimensional finite element model for the simulation study of the stress distribution characteristics of the patellofemoral joint after combined proximal and distal knee extension rearrangement surgery for recurrent patellar dislocation. Results The maximum pressure on the patellofemoral joint surface measured by pressure-sensitive paper and three-dimensional finite element measurements were similar at all passive flexion angles in the normal knee joint, with a difference of −0.08-0.06 MPa; the maximum pressure on the patellofemoral joint surface measured by pressure-sensitive paper and three-dimensional finite element measurements were also similar at all passive flexion angles in the knee after combined proximal and distal knee extension rearrangement surgery, with a difference of −0.04-0.09 MPa. The maximum pressure on the patellofemoral joint surface measured by three-dimensional finite elements were also similar between the normal knee joint and the knee joint after combined proximal and distal knee extension rearrangement surgery at all passive flexion angles, with a difference of −0.50-−0.03 MPa. Conclusion The three-dimensional finite element model of the normal knee joint and the knee joint after combined proximal and distal knee extension rearrangement surgery can accurately and effectively quantify the change in the maximum pressure on the patellofemoral joint surface; for recurrent patellar dislocations with TT-TG value>2.00 cm, the combined proximal and distal knee extension rearrangement surgery can achieve a maximum pressure of the patellofemoral joint surface similar to that of the normal knee joint.

Citation: CAI Guofeng, WANG Xu, NING Ziwen, JIA Di, LI Song, SONG En, LI Yanlin. Three-dimensional finite element study on combined proximal and distal knee extension rearrangement for recurrent patellar dislocation. Chinese Journal of Reparative and Reconstructive Surgery, 2022, 36(5): 573-581. doi: 10.7507/1002-1892.202201015 Copy

  • Previous Article

    Surgical planning and mid-term effectiveness of four major lower extremity arthroplasties in patients with rheumatoid arthritis
  • Next Article

    Effectiveness of a single threaded anchor fixation under shoulder arthroscopy in treatment of fresh bony Bankart injury