1. |
Nakano N, Shoman H, Olavarria F, et al. Why are patients dissatisfied following a total knee replacement? A systematic review. Int Orthop, 2020, 44(10): 1971-2007.
|
2. |
孙茂淋, 杨柳, 郭林, 等. 手术机器人辅助人工全膝关节置换术改善股骨旋转对线及早期疗效研究. 中国修复重建外科杂志, 2021, 35(7): 807-812.
|
3. |
Batailler C, Fernandez A, Swan J, et al. MAKO CT-based robotic arm-assisted system is a reliable procedure for total knee arthroplasty: a systematic review. Knee Surg Sports Traumatol Arthrosc, 2021, 29(11): 3585-3598.
|
4. |
Kayani B, Konan S, Tahmassebi J, et al. Robotic-arm assisted total knee arthroplasty is associated with improved early functional recovery and reduced time to hospital discharge compared with conventional jig-based total knee arthroplasty: a prospective cohort study. Bone Joint J, 2018, 100-B(7): 930-937.
|
5. |
Kort N, Stirling P, Pilot P, et al. Robot-assisted knee arthroplasty improves component positioning and alignment, but results are inconclusive on whether it improves clinical scores or reduces complications and revisions: a systematic overview of meta-analyses. Knee Surg Sports Traumatol Arthrosc, 2021. doi: 10.1007/s00167-021-06472-4.
|
6. |
Lei K, Liu L, Chen X, et al. Navigation and robotics improved alignment compared with PSI and conventional instrument, while clinical outcomes were similar in TKA: a network meta-analysis. Knee Surg Sports Traumatol Arthrosc, 2022, 30(2): 721-733.
|
7. |
Gao J, Dong S, Li JJ, et al. New technology-based assistive techniques in total knee arthroplasty: A Bayesian network meta-analysis and systematic review. Int J Med Robot, 2020. doi: 10.1002/rcs.2189.
|
8. |
Pietrzak JRT, Rowan FE, Kayani B, et al. Preoperative CT-based three-dimensional templating in robot-assisted total knee arthroplasty more accurately predicts implant sizes than two-dimensional templating. J Knee Surg, 2019, 32(7): 642-648.
|
9. |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation//Lecture Notes in Computer Science. [s.l.]: Springer International Publishing, 2015: 234-241.
|
10. |
Kirillov A, Wu Y, He K, et al. PointRend: Image segmentation as rendering. IEEE, 2020. doi: 10.1109/CVPR42600.2020.00982.
|
11. |
Taha AA, Hanbury A. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging, 2015, 15: 29. doi: 10.1186/s12880-015-0068-x.
|
12. |
Fenster A, Chiu B. Evaluation of segmentation algorithms for medical imaging. Conf Proc IEEE Eng Med Biol Soc, 2005, 2005: 7186-7189.
|
13. |
Klein S, van der Heide UA, Lips IM, et al. Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Med Phys, 2008, 35(4): 1407-1417.
|
14. |
Neves CA, Tran ED, Kessler IM, et al. Fully automated preoperative segmentation of temporal bone structures from clinical CT scans. Sci Rep, 2021, 11(1): 116. doi: 10.1038/s41598-020-80619-0.
|
15. |
Mahfouz MR, Abdel Fatah EE, Johnson JM, et al. A novel approach to 3D bone creation in minutes: 3D ultrasound. Bone Joint J, 2021, 103-B(6 Supple A): 81-86.
|
16. |
Myers TG, Ramkumar PN, Ricciardi BF, et al. Artificial intelligence and orthopaedics: An introduction for clinicians. J Bone Joint Surg (Am), 2020, 102(9): 830-840.
|
17. |
Bini SA. Artificial intelligence, machine learning, deep learning, and cognitive computing: What do these terms mean and how will they impact health care? J Arthroplasty, 2018, 33(8): 2358-2361.
|
18. |
Haeberle HS, Helm JM, Navarro SM, et al. Artificial intelligence and machine learning in lower extremity arthroplasty: A review. J Arthroplasty, 2019, 34(10): 2201-2203.
|
19. |
Li R, Xiao C, Huang Y, et al. Deep learning applications in computed tomography images for pulmonary nodule detection and diagnosis: A review. Diagnostics (Basel), 2022, 12(2): 298. doi: 10.3390/diagnostics12020298.
|
20. |
Sherer MV, Lin D, Elguindi S, et al. Metrics to evaluate the performance of auto-segmentation for radiation treatment planning: A critical review. Radiother Oncol, 2021, 160: 185-191.
|
21. |
Wu D, Sofka M, Birkbeck N, et al. Segmentation of multiple knee bones from CT for orthopedic knee surgery planning. Med Image Comput Comput Assist Interv, 2014, 17(Pt 1): 372-380.
|