1. |
Fischer I, Dulin JN, Lane MA. Transplanting neural progenitor cells to restore connectivity after spinal cord injury. Nat Rev Neurosci, 2020, 21(7): 366-383.
|
2. |
Bie F, Wang K, Xu T, et al. The potential roles of circular RNAs as modulators in traumatic spinal cord injury. Biomed Pharmacother, 2021, 141: 111826. doi: 10.1016/j.biopha.2021.111826.
|
3. |
Lin J, Xiong Z, Gu J, et al. Sirtuins: Potential therapeutic targets for defense against oxidative stress in spinal cord injury. Oxid Med Cell Longev, 2021, 2021: 7207692. doi: 10.1155/2021/7207692.
|
4. |
Flack JA, Sharma KD, Xie JY. Delving into the recent advancements of spinal cord injury treatment: a review of recent progress. Neural Regen Res, 2022, 17(2): 283-291.
|
5. |
Quadri SA, Farooqui M, Ikram A, et al. Recent update on basic mechanisms of spinal cord injury. Neurosurg Rev, 2020, 43(2): 425-441.
|
6. |
Jiang M, Bai M, Lei J, et al. Mitochondrial dysfunction and the AKI-to-CKD transition. Am J Physiol Renal Physiol, 2020, 319(6): F1105-F1116.
|
7. |
Andrabi SS, Yang J, Gao Y, et al. Nanoparticles with antioxidant enzymes protect injured spinal cord from neuronal cell apoptosis by attenuating mitochondrial dysfunction. J Control Release, 2020, 317: 300-311.
|
8. |
Slater PG, Domínguez-Romero ME, Villarreal M, et al. Mitochondrial function in spinal cord injury and regeneration. Cell Mol Life Sci, 2022, 79(5): 239. doi: 10.1007/s00018-022-04261-x.
|
9. |
Fan B, Wei Z, Feng S. Progression in translational research on spinal cord injury based on microenvironment imbalance. Bone Res, 2022, 10(1): 35. doi: 10.1038/s41413-022-00199-9.
|
10. |
Hou Y, Luan J, Huang T, et al. Tauroursodeoxycholic acid alleviates secondary injury in spinal cord injury mice by reducing oxidative stress, apoptosis, and inflammatory response. J Neuroinflammation, 2021, 18(1): 216. doi: 10.1186/s12974-021-02248-2.
|
11. |
Anjum A, Yazid MD, Fauzi Daud M, et al. Spinal cord injury: Pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci, 2020, 21(20): 7533. doi: 10.3390/ijms21207533.
|
12. |
McEwen ML, Sullivan PG, Rabchevsky AG, et al. Targeting mitochondrial function for the treatment of acute spinal cord injury. Neurotherapeutics, 2011, 8(2): 168-179.
|
13. |
Springer JE, Prajapati P, Sullivan PG. Targeting the mitochondrial permeability transition pore in traumatic central nervous system injury. Neural Regen Res, 2018, 13(8): 1338-1341.
|
14. |
Baroncini A, Maffulli N, Eschweiler J, et al. Pharmacological management of secondary spinal cord injury. Expert Opin Pharmacother, 2021, 22(13): 1793-1800.
|
15. |
Scholpa NE, Schnellmann RG. Mitochondrial-based therapeutics for the treatment of spinal cord injury: Mitochondrial biogenesis as a potential pharmacological target. J Pharmacol Exp Ther, 2017, 363(3): 303-313.
|
16. |
Patel SP, Sullivan PG, Lyttle TS, et al. Acetyl-L-carnitine treatment following spinal cord injury improves mitochondrial function correlated with remarkable tissue sparing and functional recovery. Neuroscience, 2012, 210: 296-307.
|
17. |
Patel SP, Sullivan PG, Pandya JD, et al. N-acetylcysteine amide preserves mitochondrial bioenergetics and improves functional recovery following spinal trauma. Exp Neurol, 2014, 257: 95-105.
|
18. |
Wang H, Zheng Z, Han W, et al. Metformin promotes axon regeneration after spinal cord injury through inhibiting oxidative stress and stabilizing microtubule. Oxid Med Cell Longev, 2020, 2020: 9741369. doi: 10.1155/2020/9741369.
|
19. |
Kim JW, Mahapatra C, Hong JY, et al. Functional recovery of contused spinal cord in rat with the injection of optimal-dosed cerium oxide nanoparticles. Adv Sci (Weinh), 2017, 4(10): 1700034. doi: 10.1002/advs.201700034.
|
20. |
Luo W, Wang Y, Lin F, et al. Selenium-doped carbon quantum dots efficiently ameliorate secondary spinal cord injury via scavenging reactive oxygen species. Int J Nanomedicine, 2020, 15: 10113-10125.
|
21. |
Wang Y, Jiao J, Zhang S, et al. RIP3 inhibition protects locomotion function through ameliorating mitochondrial antioxidative capacity after spinal cord injury. Biomed Pharmacother, 2019, 116: 109019. doi: 10.1016/j.biopha.2019.109019.
|
22. |
Shi Z, Yuan S, Shi L, et al. Programmed cell death in spinal cord injury pathogenesis and therapy. Cell Prolif, 2021, 54(3): e12992. doi: doi: 10.1111/cpr.12992.
|
23. |
Ying Y, Zhang Y, Tu Y, et al. Hypoxia response element-directed expression of aFGF in neural stem cells promotes the recovery of spinal cord injury and attenuates SCI-induced apoptosis. Front Cell Dev Biol, 2021, 9: 693694. doi: 10.3389/fcell.2021.693694.
|
24. |
Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol, 2020, 21(2): 85-100.
|
25. |
Rabchevsky AG, Michael FM, Patel SP. Mitochondria focused neurotherapeutics for spinal cord injury. Exp Neurol, 2020, 330: 113332. doi: doi: 10.1016/j.expneurol.2020.113332.
|
26. |
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res, 2020, 160: 105069. doi: 10.1016/j.phrs.2020.105069.
|
27. |
Zhang Q, Xiong Y, Li B, et al. Total flavonoids of hawthorn leaves promote motor function recovery via inhibition of apoptosis after spinal cord injury. Neural Regen Res, 2021, 16(2): 350-356.
|
28. |
Zhao R, Wu X, Bi XY, et al. Baicalin attenuates blood-spinal cord barrier disruption and apoptosis through PI3K/Akt signaling pathway after spinal cord injury. Neural Regen Res, 2022, 17(5): 1080-1087.
|
29. |
Zhu M, Huang X, Shan H, et al. Mitophagy in traumatic brain injury: A New target for therapeutic intervention. Oxid Med Cell Longev, 2022, 2022: 4906434. doi: 10.1155/2022/4906434.
|
30. |
Mao Y, Du J, Chen X, et al. Maltol promotes mitophagy and inhibits oxidative stress via the nrf2/pink1/parkin pathway after spinal cord injury. Oxid Med Cell Longev, 2022, 2022: 1337630. doi: 10.1155/2022/1337630.
|
31. |
Kim SY, Shim MS, Kim KY, et al. Inhibition of cyclophilin D by cyclosporin A promotes retinal ganglion cell survival by preventing mitochondrial alteration in ischemic injury. Cell Death Dis, 2014, 5(3): e1105. doi: 10.1038/cddis.2014.80.
|
32. |
Liu K, Yan L, Jiang X, et al. Acquired inhibition of microRNA-124 protects against spinal cord ischemia-reperfusion injury partially through a mitophagy-dependent pathway. J Thorac Cardiovasc Surg, 2017, 154(5): 1498-1508.
|
33. |
Li Q, Gao S, Kang Z, et al. Rapamycin enhances mitophagy and attenuates apoptosis after spinal ischemia-reperfusion injury. Front Neurosci, 2018, 12: 865. doi: 10.3389/fnins.2018.00865.
|
34. |
Neginskaya MA, Pavlov EV, Sheu SS. Electrophysiological properties of the mitochondrial permeability transition pores: Channel diversity and disease implication. Biochim Biophys Acta Bioenerg, 2021, 1862(3): 148357. doi: 10.1016/j.bbabio.2020.148357.
|
35. |
Wang S, Smith GM, Selzer ME, et al. Emerging molecular therapeutic targets for spinal cord injury. Expert Opin Ther Targets, 2019, 23(9): 787-803.
|
36. |
Springer JE, Visavadiya NP, Sullivan PG, et al. Post-injury treatment with NIM811 promotes recovery of function in adult female rats after spinal cord contusion: A dose-response study. J Neurotrauma, 2018, 35(3): 492-499.
|
37. |
Simmons EC, Scholpa NE, Schnellmann RG. FDA-approved 5-HT1F receptor agonist lasmiditan induces mitochondrial biogenesis and enhances locomotor and blood-spinal cord barrier recovery after spinal cord injury. Exp Neurol, 2021, 341: 113720. doi: 10.1016/j.expneurol.2021.113720.
|
38. |
Simmons EC, Scholpa NE, Schnellmann RG. Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative CNS diseases. Exp Neurol, 2020, 329: 113309. doi: 10.1016/j.expneurol.2020.113309.
|
39. |
Cardanho-Ramos C, Morais VA. Mitochondrial biogenesis in neurons: How and where. Int J Mol Sci, 2021, 22(23): 13059. doi: 10.3390/ijms222313059.
|
40. |
Hu J, Lang Y, Zhang T, et al. Lentivirus-mediated PGC-1α overexpression protects against traumatic spinal cord injury in rats. Neuroscience, 2016, 328: 40-49.
|
41. |
Hu J, Lang Y, Cao Y, et al. The neuroprotective effect of tetramethylpyrazine against contusive spinal cord injury by activating PGC-1α in rats. Neurochem Res, 2015, 40(7): 1393-1401.
|
42. |
Scholpa NE, Williams H, Wang W, et al. Pharmacological stimulation of mitochondrial biogenesis using the food and drug administration-approved beta2-adrenoreceptor agonist formoterol for the treatment of spinal cord injury. J Neurotrauma, 2019, 36(6): 962-972.
|
43. |
Scholpa NE, Simmons EC, Crossman JD, et al. Time-to-treatment window and cross-sex potential of β2-adrenergic receptor-induced mitochondrial biogenesis-mediated recovery after spinal cord injury. Toxicol Appl Pharmacol, 2021, 411: 115366. doi: 10.1016/j.taap.2020.115366.
|
44. |
Simmons EC, Scholpa NE, Cleveland KH, et al. 5-hydroxytryptamine 1F receptor agonist induces mitochondrial biogenesis and promotes recovery from spinal cord injury. J Pharmacol Exp Ther, 2020, 372(2): 216-223.
|