1. |
Lee NH, Seo HY, Sung MJ, et al. Does meniscectomy have any advantage over conservative treatment in middle-aged patients with degenerative medial meniscus posterior root tear? BMC Musculoskelet Disord, 2021, 22(1): 742. doi: 10.1186/s12891-021-04632-8.
|
2. |
Berg B, Roos EM, Kise NJ, et al. On a trajectory for success-9 in every 10 people with a degenerative meniscus tear have improved knee function within 2 years after treatment: A secondary exploratory analysis of a randomized controlled trial. J Orthop Sports Phys Ther, 2021, 51(6): 289-297.
|
3. |
Pache S, Aman ZS, Kennedy M, et al. Meniscal root tears: Current concepts review. Arch Bone Jt Surg, 2018, 6(4): 250-259.
|
4. |
Lecouvet F, Van Haver T, Acid S, et al. Magnetic resonance imaging (MRI) of the knee: Identification of difficult-to-diagnose meniscal lesions. Diagn Interv Imaging, 2018, 99(2): 55-64.
|
5. |
Naraghi AM, White LM. Imaging of athletic injuries of knee ligaments and menisci: Sports imaging series. Radiology, 2016, 281(1): 23-40.
|
6. |
Crawford R, Walley G, Bridgman S, et al. Magnetic resonance imaging versus arthroscopy in the diagnosis of knee pathology, concentrating on meniscal lesions and ACL tears: a systematic review. Br Med Bull, 2007, 84: 5-23.
|
7. |
Chen H, Zhang X, Wang X, et al. MRI-based radiomics signature for pretreatment prediction of pathological response to neoadjuvant chemotherapy in osteosarcoma: a multicenter study. Eur Radiol, 2021, 31(10): 7913-7924.
|
8. |
Ubaldi L, Valenti V, Borgese RF, et al. Strategies to develop radiomics and machine learning models for lung cancer stage and histology prediction using small data samples. Phys Med, 2021, 90: 13-22.
|
9. |
Yang Y, Li J, Liu Y, et al. Magnetic resonance imaging radiomics signatures for predicting endocrine resistance in hormone receptor-positive non-metastatic breast cancer. Breast, 2021, 60: 90-97.
|
10. |
Bang M, Eom J, An C, et al. An interpretable multiparametric radiomics model for the diagnosis of schizophrenia using magnetic resonance imaging of the corpus callosum. Transl Psychiatry, 2021, 11(1): 462. doi: 10.1038/s41398-021-01586-2.
|
11. |
Wang R, Xu L. Coronary computed tomography angiography radiomics: A potential noninvasive tool for detecting myocardial fibrosis. Int J Cardiol, 2021, 338: 276-277.
|
12. |
Couteaux V, Si-Mohamed S, Nempont O, et al. Automatic knee meniscus tear detection and orientation classification with Mask-RCNN. Diagn Interv Imaging, 2019, 100(4): 235-242.
|
13. |
Fritz B, Marbach G, Civardi F, et al. Correction to: Deep convolutional neural network-based detection of meniscus tears: comparison with radiologists and surgery as standard of reference. Skeletal Radiol, 2020, 49(8): 1219. doi: 10.1007/s00256-020-03458-0.
|
14. |
Saygılı A, Albayrak S. An efficient and fast computer-aided method for fully automated diagnosis of meniscal tears from magnetic resonance images. Artif Intell Med, 2019, 97: 118-130.
|
15. |
Song Z, Tang Z, Liu H, et al. A clinical-radiomics nomogram may provide a personalized 90-day functional outcome assessment for spontaneous intracerebral hemorrhage. Eur Radiol, 2021, 31(7): 4949-4959.
|
16. |
Xie H, Ma S, Wang X, et al. Noncontrast computer tomography-based radiomics model for predicting intracerebral hemorrhage expansion: preliminary findings and comparison with conventional radiological model. Eur Radiol, 2020, 30(1): 87-98.
|
17. |
Jiang PQ. Diagnosis of knee meniscus injury by low field MRI. Guide of China Medicine, 2017, 13(13): 95-96.
|
18. |
Qiu X, Liu Z, Zhuang M, et al. Fusion of CNN1 and CNN2-based magnetic resonance image diagnosis of knee meniscus injury and a comparative analysis with computed tomography. Comput Methods Programs Biomed, 2021, 211: 106297. doi: 10.1016/j.cmpb.2021.106297.
|
19. |
Fritz B, Marbach G, Civardi F, et al. Deep convolutional neural network-based detection of meniscus tears: comparison with radiologists and surgery as standard of reference. Skeletal Radiol, 2020, 49(8): 1207-1217.
|
20. |
Li Z, Ren S, Zhang X, et al. Deep learning-based image feature with arthroscopy-aided early diagnosis and treatment of meniscus injury of knee joint. J Healthc Eng, 2021, 2021: 2254594. doi: 10.1155/2021/2254594.
|
21. |
Bien N, Rajpurkar P, Ball RL, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. PLoS Med, 2018, 15(11): e1002699. doi: 10.1371/journal.pmed.1002699.
|
22. |
Rizk B, Brat H, Zille P, et al. Meniscal lesion detection and characterization in adult knee MRI: A deep learning model approach with external validation. Phys Med, 2021, 83: 64-71.
|
23. |
Astuto B, Flament I, Namiri KN, et al. Automatic deep learning-assisted detection and grading of abnormalities in knee MRI studies. Radiol Artif Intell, 2021, 3(3): e200165. doi: 10.1148/ryai.2021200165.
|
24. |
张新民, 曹结水. 膝关节半月板损伤的MRI分级分类及临床应用. 安徽卫生职业技术学院学报, 2020, 19(1): 43-44.
|