• 1. Department of Oncology Plastic Surgery, Hunan Cancer Hospital, Changsha Hunan, 410008, P. R. China;
  • 2. Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, P. R. China;
LI Zan, Email: zzanli@163.com
Export PDF Favorites Scan Get Citation

Objective To summarize the combination methods and optimization strategies of the harvest procedure of anterolateral thigh chimeric perforator myocutaneous flap. Methods A clinical data of 359 cases of oral cancer admitted between June 2015 and December 2021 was retrospectively analyzed. There were 338 males and 21 females with an average age of 35.7 years (range, 28-59 years). There were 161 cases of tongue cancer, 132 cases of gingival cancer, and 66 cases of buccal and oral cancer. According to the Union International Center of Cancer (UICC) TNM staging, there were 137 cases of T4N0M0, 166 cases of T4N1M0, 43 cases of T3N1M0, 13 cases of T3N2M0. The disease duration was 1-12 months (mean, 6.3 months). The soft tissue defects in size of 5.0 cm×4.0 cm to 10.0 cm×7.5 cm remained after radical resection were repaired with the free anterolateral thigh chimeric perforator myocutaneous flaps. The process of harvesting the myocutaneous flap was mainly divided into 4 steps. Step 1: exposing and separating the perforator vessels, which mainly came from the oblique branch and the lateral branch of the descending branch. Step 2: isolating the main trunk of the perforator vessel pedicle and determining the origin of the vascular pedicle of muscle flap, which was came from oblique branch, lateral branch of the descending branch, or medial branch of the descending branch. Step 3: determining the source of muscle flap, including lateral thigh muscle and rectus femoris muscle. Step 4: determining the harvest form of muscle flap, which included muscle branch type, main trunk distal type, and main trunk lateral type. Results  The 359 free anterolateral thigh chimeric perforator myocutaneous flaps were harvested. In all cases, the anterolateral femoral perforator vessels existed. The perforator vascular pedicle of the flap came from the oblique branch in 127 cases and the lateral branch of the descending branch in 232 cases. The vascular pedicle of muscle flap originated from the oblique branch in 94 cases, the lateral branch of the descending branch in 187 cases, and the medial branch of the descending branch in 78 cases. The muscle flaps harvested from the lateral thigh muscle in 308 cases and the rectus femoris muscle in 51 cases. The harvest forms of muscle flaps included 154 cases of muscle branch type, 78 cases of main trunk distal type, and 127 cases of main trunk lateral type. The size of skin flaps ranged from 6.0 cm×4.0 cm to 16.0 cm×8.0 cm, and the size of muscle flaps range from 5.0 cm×4.0 cm to 9.0 cm×6.0 cm. In 316 cases, the perforating artery anastomosed with the superior thyroid artery, and the accompanying vein anastomosed with the superior thyroid vein. In 43 cases, the perforating artery anastomosed with the facial artery, and the accompanying vein anastomosed with the facial vein. After operation, the hematoma occurred in 6 cases and vascular crisis in 4 cases. Among them, 7 cases were successfully saved after emergency exploration, 1 case had partial necrosis of skin flap, which was healed after conservative dressing change, and 2 cases had complete necrosis of skin flap, which was repaired by pectoralis major myocutaneous flap. All patients were followed up 10-56 months (mean, 22.5 months). The appearance of the flap was satisfactory, and the swallowing and language functions were restored satisfactorily. Only linear scar left in the donor site with no significant effect on thigh function. During follow-up, 23 patients had local tumor recurrence and 16 patients had cervical lymph node metastasis. The 3-year survival rate was 38.2% (137/359). Conclusion  The flexible and clear classification of the key points in the harvest process of anterolateral thigh chimeric perforator myocutaneous flap can optimize the protocol to the greatest extent, increase the safety of the operation, and reduce the difficulty of the operation.

Citation: SONG Dajiang, LI Zan, ZHANG Yixin. Combination mode and optimization strategy of harvest procedure of anterolateral thigh chimeric perforator myocutaneous flap. Chinese Journal of Reparative and Reconstructive Surgery, 2023, 37(2): 180-184. doi: 10.7507/1002-1892.202209059 Copy

  • Previous Article

    Application of unilateral biportal endoscopy technique in single-segment thoracic ossification of ligamentum flavum
  • Next Article

    Application of augmented reality technique in repairing soft tissue defects of lower limbs with posterior tibial artery perforator flap