1. |
Simunovic F, Finkenzeller G. Vascularization strategies in bone tissue engineering. Cells, 2021, 10(7): 1749. doi: 10.3390/cells10071749.
|
2. |
Laschke MW, Menger MD. Spheroids as vascularization units: From angiogenesis research to tissue engineering applications. Biotechnol Adv, 2017, 35(6): 782-791.
|
3. |
Hou T, Du M, Gao X, et al. Human vascular endothelial cells promote the secretion of vascularization factors and migration of human skin fibroblasts under co-culture and its preliminary application. Int J Mol Sci, 2022, 23(22): 13995. doi: 10.3390/ijms232213995.
|
4. |
Zhao W, Zhu J, Hang J, et al. Biomaterials to promote vascularization in tissue engineering organs and ischemic fibrotic diseases. MedComm-Biomaterials and Applications, 2022, 1(1): e16. doi: 10.1002/mba2.16.
|
5. |
Usuba R, Pauty J, Soncin F, et al. EGFL7 regulates sprouting angiogenesis and endothelial integrity in a human blood vessel model. Biomaterials, 2019, 197: 305-316.
|
6. |
Kim J, Kim YH, Kim J, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest, 2017, 127(9): 3441-3461.
|
7. |
Abdalrahman T, Checa S. On the role of mechanical signals on sprouting angiogenesis through computer modeling approaches. Biomech Model Mechanobiol, 2022, 21(6): 1623-1640.
|
8. |
Link PA, Heise RL, Weinberg SH. Cellular mitosis predicts vessel stability in a mechanochemical model of sprouting angiogenesis. Biomech Model Mechanobiol, 2021, 20(3): 1195-1208.
|
9. |
Heitzig N, Brinkmann BF, Koerdt SN, et al. Annexin A8 promotes VEGF-A driven endothelial cell sprouting. Cell Adh Migr, 2017, 11(3): 275-287.
|
10. |
Guo Y, Mei F, Huang Y, et al. Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis. Bioact Mater, 2021, 7: 364-376.
|
11. |
Chen W, Xia P, Wang H, et al. The endothelial tip-stalk cell selection and shuffling during angiogenesis. J Cell Commun Signal, 2019, 13(3): 291-301.
|
12. |
Kim YH, Choi J, Yang MJ, et al. A MST1-FOXO1 cascade establishes endothelial tip cell polarity and facilitates sprouting angiogenesis. Nat Commun, 2019, 10(1): 838. doi: 10.1038/s41467-019-08773-2.
|
13. |
姚牧笛, 孙婷婷, 蒋沁. 血管内皮细胞在视网膜出芽式血管生成中的作用及其调控机制. 国际眼科杂志, 2020, 20(2): 251-254.
|
14. |
Bandaru P, Cefaloni G, Vajhadin F, et al. Mechanical cues regulating proangiogenic potential of human mesenchymal stem cells through YAP-mediated mechanosensing. Small, 2020, 16(25): e2001837. doi: 10.1002/smll.202001837.
|
15. |
Romero-López M, Trinh AL, Sobrino A, et al. Recapitulating the human tumor microenvironment: Colon tumor-derived extracellular matrix promotes angiogenesis and tumor cell growth. Biomaterials, 2017, 116: 118-129.
|
16. |
Zhao D, Xue C, Li Q, et al. Substrate stiffness regulated migration and angiogenesis potential of A549 cells and HUVECs. J Cell Physiol, 2018, 233(4): 3407-3417.
|
17. |
Martínez GF, Fagetti J, Vierci G, et al. Extracellular matrix stiffness negatively affects axon elongation, growth cone area and F-actin levels in a collagen type Ⅰ 3D culture. J Tissue Eng Regen Med, 2022, 16(2): 151-162.
|
18. |
Yun S, Hu R, Schwaemmle ME, et al. Integrin α5β1 regulates PP2A complex assembly through PDE4D in atherosclerosis. J Clin Invest, 2019, 129(11): 4863-4874.
|
19. |
Yeh YT, Hur SS, Chang J, et al. Matrix stiffness regulates endothelial cell proliferation through septin 9. PLoS One, 2012, 7(10): e46889. doi: 10.1371/journal.pone.0046889.
|
20. |
Liu Y, Lv J, Liang X, et al. Fibrin stiffness mediates dormancy of tumor-repopulating cells via a Cdc42-driven Tet2 epigenetic program. Cancer Res, 2018, 78(14): 3926-3937.
|
21. |
陈伟洋, 田俊, 韦曦. 硅离子在骨组织修复再生领域的作用. 中华口腔医学研究杂志 (电子版), 2021, 15(6): 375-381.
|
22. |
Fu P, Ramchandran R, Shaaya M, et al. Phospholipase D2 restores endothelial barrier function by promoting PTPN14-mediated VE-cadherin dephosphorylation. J Biol Chem, 2020, 295(22): 7669-7685.
|
23. |
Bordeleau F, Mason BN, Lollis EM, et al. Matrix stiffening promotes a tumor vasculature phenotype. Proc Natl Acad Sci U S A, 2017, 114(3): 492-497.
|
24. |
Wang Y, Zhang X, Wang W, et al. Integrin αVβ5/Akt/Sp1 pathway participates in matrix stiffness-mediated effects on VEGFR2 upregulation in vascular endothelial cells. Am J Cancer Res, 2020, 10(8): 2635-2648.
|
25. |
Colombo E, Cattaneo MG. Multicellular 3D models to study tumour-stroma interactions. Int J Mol Sci, 2021, 22(4): 1633. doi: 10.3390/ijms22041633.
|
26. |
Berger AJ, Renner CM, Hale I, et al. Scaffold stiffness influences breast cancer cell invasion via EGFR-linked Mena upregulation and matrix remodeling. Matrix Biol, 2020, 85-86: 80-93.
|
27. |
Berger AJ, Linsmeier KM, Kreeger PK, et al. Decoupling the effects of stiffness and fiber density on cellular behaviors via an interpenetrating network of gelatin-methacrylate and collagen. Biomaterials, 2017, 141: 125-135.
|
28. |
Bao M, Chen Y, Liu JT, et al. Extracellular matrix stiffness controls VEGF165 secretion and neuroblastoma angiogenesis via the YAP/RUNX2/SRSF1 axis. Angiogenesis, 2022, 25(1): 71-86.
|
29. |
Gonçalves IG, Garcia-Aznar JM. Extracellular matrix density regulates the formation of tumour spheroids through cell migration. PLoS Comput Biol, 2021, 17(2): e1008764. doi: 10.1371/journal.pcbi.1008764.
|
30. |
Wang X, Freire Valls A, Schermann G, et al. YAP/TAZ orchestrate VEGF signaling during developmental angiogenesis. Dev Cell, 2017, 42(5): 462-478.
|
31. |
Jiang X, Hu J, Wu Z, et al. Protein phosphatase 2A mediates YAP activation in endothelial cells upon VEGF stimulation and matrix stiffness. Front Cell Dev Biol, 2021, 9: 675562. doi: 10.3389/fcell.2021.675562.
|
32. |
Nakajima H, Yamamoto K, Agarwala S, et al. Flow-dependent endothelial YAP regulation contributes to vessel maintenance. Dev Cell, 2017, 40(6): 523-536.
|
33. |
Shen Y, Wang X, Lu J, et al. Reduction of liver metastasis stiffness improves response to bevacizumab in metastatic colorectal cancer. Cancer Cell, 2020, 37(6): 800-817.
|
34. |
Barreto S, Gonzalez-Vazquez A, Cameron AR, et al. Identification of the mechanisms by which age alters the mechanosensitivity of mesenchymal stromal cells on substrates of differing stiffness: Implications for osteogenesis and angiogenesis. Acta Biomater, 2017, 53: 59-69.
|
35. |
Xie J, Zhang D, Ling Y, et al. Substrate elasticity regulates vascular endothelial growth factor A (VEGFA) expression in adipose-derived stromal cells: Implications for potential angiogenesis. Colloids Surf B Biointerfaces, 2019, 175: 576-585.
|
36. |
Landau S, Ben-Shaul S, Levenberg S. Oscillatory train promotes vessel stabilization and alignment through fibroblast YAP-mediated mechanosensitivity. Adv Sci (Weinh), 2018, 5(9): 1800506. doi: 10.1002/advs.201800506.
|
37. |
Sack KD, Teran M, Nugent MA. Extracellular matrix stiffness controls VEGF signaling and processing in endothelial cells. J Cell Physiol, 2016, 231(9): 2026-2039.
|
38. |
Miller B, Sewell-Loftin MK. Mechanoregulation of vascular endothelial growth factor receptor 2 in angiogenesis. Front Cardiovasc Med, 2022, 8: 804934. doi: 10.3389/fcvm.2021.804934.
|
39. |
van der Stoel M, Schimmel L, Nawaz K, et al. DLC1 is a direct target of activated YAP/TAZ that drives collective migration and sprouting angiogenesis. J Cell Sci, 2020, 133(3): jcs239947. doi: 10.1242/jcs.239947.
|
40. |
Kai F, Laklai H, Weaver VM. Force matters: Biomechanical regulation of cell invasion and migration in disease. Trends Cell Biol, 2016, 26(7): 486-497.
|
41. |
Francis CR, Kincross H, Kushner EJ. Rab35 governs apicobasal polarity through regulation of actin dynamics during sprouting angiogenesis. Nat Commun, 2022, 13(1): 5276. doi: 10.1038/s41467-022-32853-5.
|