1. |
Naran S, Steinbacher DM, Taylor JA. Current concepts in orthognathic surgery. Plast Reconstr Surg, 2018, 141(6): 925e-936e.
|
2. |
Klein KP, Kaban LB, Masoud MI. Orthognathic surgery and orthodontics: Inadequate planning leading to complications or unfavorable results. Oral Maxillofac Surg Clin North Am, 2020, 32(1): 71-82.
|
3. |
Ter Horst R, van Weert H, Loonen T, et al. Three-dimensional virtual planning in mandibular advancement surgery: Soft tissue prediction based on deep learning. J Craniomaxillofac Surg, 2021, 49(9): 775-782.
|
4. |
McAllister P, Watson M, Burke E. A cost-effective, in-house, positioning and cutting guide system for orthognathic surgery. J Maxillofac Oral Surg, 2018, 17(1): 112-114.
|
5. |
Lo LJ, Niu LS, Liao CH, et al. A novel CAD/CAM composite occlusal splint for intraoperative verification in single-splint two-jaw orthognathic surgery. Biomed J, 2021, 44(3): 353-362.
|
6. |
Ho CT, Denadai R, Lai HC, et al. Computer-aided planning in orthognathic surgery: A comparative study with the establishment of burstone analysis-derived 3D norms. J Clin Med, 2019, 8(12): 2106. doi: 10.3390/jcm8122106.
|
7. |
Goulart ME, Biegelmeyer TC, Moreira-Souza L, et al. What is the accuracy of the surgical guide in the planning of orthognathic surgeries? A systematic review. Med Oral Patol Oral Cir Bucal, 2022, 27(2): e125-e134.
|
8. |
Ho CT, Lin HH, Lo LJ. Intraoral scanning and setting up the digital final occlusion in three-dimensional planning of orthognathic surgery: Its comparison with the dental model approach. Plast Reconstr Surg, 2019, 143(5): 1027e-1036e.
|
9. |
Liu XJ, Li QQ, Zhang Z, et al. Virtual occlusal definition for orthognathic surgery. Int J Oral Maxillofac Surg, 2016, 45(3): 406-411.
|
10. |
Beek DM, Baan F, Liebregts J, et al. Surgical accuracy in 3D planned bimaxillary osteotomies: intraoral scans and plaster casts as digital dentition models. Int J Oral Maxillofac Surg, 2022, 51(7): 922-928.
|
11. |
Badiali G, Costabile E, Lovero E, et al. Virtual orthodontic surgical planning to improve the accuracy of the surgery-first approach: A prospective evaluation. J Oral Maxillofac Surg, 2019, 77(10): 2104-2115.
|
12. |
Glisic O, Hoejbjerre L, Sonnesen L. A comparison of patient experience, chair-side time, accuracy of dental arch measurements and costs of acquisition of dental models. Angle Orthod, 2019, 89(6): 868-875.
|
13. |
Hou X, Xu X, Zhao M, et al. An overview of three-dimensional imaging devices in dentistry. J Esthet Restor Dent, 2022, 34(8): 1179-1196.
|
14. |
Ajmera DH, Hsung RT, Singh P, et al. Three-dimensional assessment of facial asymmetry in Class Ⅲ subjects. Part 1:a retrospective study evaluating postsurgical outcomes. Clin Oral Investig, 2022, 26(7): 4947-4966.
|
15. |
Ye J, Wang S, Wang Z, et al. Comparison of the dimensional and morphological accuracy of three-dimensional digital dental casts digitized using different methods. Odontology, 2022. doi: 10.1007/s10266-022-00736-2.
|
16. |
Rangel FA, Maal TJJ, de Koning MJJ, et al. Integration of digital dental casts in cone beam computed tomography scans-a clinical validation study. Clin Oral Investig, 2018, 22(3): 1215-1222.
|
17. |
Baan F, Bruggink R, Nijsink J, et al. Fusion of intra-oral scans in cone-beam computed tomography scans. Clin Oral Investig, 2021, 25(1): 77-85.
|
18. |
Zou B, Kim JH, Kim SH, et al. Accuracy of a surface-based fusion method when integrating digital models and the cone beam computed tomography scans with metal artifacts. Sci Rep, 2022, 12(1): 8034. doi: 10.1038/s41598-022-11677-9.
|
19. |
Liao YF, Atipatyakul P, Chen YH, et al. Skeletal stability after bimaxillary surgery with surgery-first approach for class Ⅲ asymmetry is not related to virtual surgical occlusal contact. Clin Oral Investig, 2022, 26(7): 4935-4945.
|
20. |
Elnagar MH, Aronovich S, Kusnoto B. Digital workflow for combined orthodontics and orthognathic surgery. Oral Maxillofac Surg Clin North Am, 2020, 32(1): 1-14.
|
21. |
De Luca Canto G, Pachêco-Pereira C, Lagravere MO, et al. Intra-arch dimensional measurement validity of laser-scanned digital dental models compared with the original plaster models: a systematic review. Orthod Craniofac Res, 2015, 18(2): 65-76.
|
22. |
Emir F, Ayyıldız S. Evaluation of the trueness and precision of eight extraoral laboratory scanners with a complete-arch model: a three-dimensional analysis. J Prosthodont Res, 2019, 63(4): 434-439.
|
23. |
Apostolakis D, Michelinakis G, Kourakis G, et al. Accuracy of triangular meshes of stone models created from DICOM cone beam CT data. Int J Implant Dent, 2019, 5(1): 20. doi: 10.1186/s40729-019-0171-9.
|
24. |
Pagano S, Moretti M, Marsili R, et al. Evaluation of the accuracy of four digital methods by linear and volumetric analysis of dental impressions. Materials (Basel), 2019, 12(12): 1958. doi: 10.3390/ma12121958.
|
25. |
Becker K, Schmücker U, Schwarz F, et al. Accuracy and eligibility of CBCT to digitize dental plaster casts. Clin Oral Investig, 2018, 22(4): 1817-1823.
|
26. |
Suese K. Progress in digital dentistry: The practical use of intraoral scanners. Dent Mater J, 2020, 39(1): 52-56.
|
27. |
Sfondrini MF, Gandini P, Malfatto M, et al. Computerized casts for orthodontic purpose using powder-free intraoral scanners: accuracy, execution time, and patient feedback. Biomed Res Int, 2018, 2018: 4103232. doi: 10.1155/2018/4103232.
|
28. |
Rotar RN, Faur AB, Pop D, et al. Scanning distance influence on the intraoral scanning accuracy-an in vitro study. Materials (Basel), 2022, 15(9): 3061. doi: 10.3390/ma15093061.
|
29. |
Wesemann C, Kienbaum H, Thun M, et al. Does ambient light affect the accuracy and scanning time of intraoral scans? J Prosthet Dent, 2021, 125(6): 924-931.
|
30. |
Amornvit P, Rokaya D, Sanohkan S. Comparison of accuracy of current ten intraoral scanners. Biomed Res Int, 2021, 2021: 2673040.
|
31. |
Kong L, Li Y, Liu Z. Digital versus conventional full-arch impressions in linear and 3D accuracy: a systematic review and meta-analysis of in vivo studies. Clin Oral Investig, 2022, 26(9): 5625-5642.
|
32. |
Kim YK, Kim SH, Choi TH, et al. Accuracy of intraoral scan images in full arch with orthodontic brackets: a retrospective in vivo study. Clin Oral Investig, 2021, 25(8): 4861-4869.
|
33. |
Lee JH, Yun JH, Han JS, et al. Repeatability of intraoral scanners for complete arch scan of partially edentulous dentitions: An in vitro study. J Clin Med, 2019, 8(8): 1187. doi: 10.3390/jcm8081187.
|
34. |
Zarauz C, Sailer I, Pitta J, et al. Influence of age and scanning system on the learning curve of experienced and novel intraoral scanner operators: A multi-centric clinical trial. J Dent, 2021, 115: 103860. doi: 10.1016/j.jdent.2021.103860.
|
35. |
Róth I, Czigola A, Joós-Kovács GL, et al. Learning curve of digital intraoral scanning-an in vivo study. BMC Oral Health, 2020, 20(1): 287. doi: 10.1186/s12903-020-01278-1.
|
36. |
Liao YF, Lo SH. Surgical occlusion setup in correction of skeletal class Ⅲ deformity using surgery-first approach: Guidelines, characteristics and accuracy. Sci Rep, 2018, 8(1): 11673. doi: 10.1038/s41598-018-30124-2.
|
37. |
Seo HJ, Denadai R, Pai BC, et al. Digital occlusion setup is quantitatively comparable with the conventional dental model approach: Characteristics and guidelines for orthognathic surgery in patients with unilateral cleft lip and palate. Ann Plast Surg, 2020, 85(2): 171-179.
|
38. |
Frick CJ, Deng HH, English JD, et al. Clinical feasibility evaluation of digital dental articulation for three-piece maxillary orthognathic surgery: a proof-of-concept study. Int J Oral Maxillofac Surg, 2022, 51(8): 1043-1049.
|
39. |
Ji H, Du W, Xu C, et al. Computer-assisted osteotomy guides and pre-bent titanium plates improve the planning for correction of facial asymmetry. Int J Oral Maxillofac Surg, 2019, 48(8): 1043-1050.
|
40. |
Wu W, Chen H, Cen Y, et al. Haptic simulation framework for determining virtual dental occlusion. Int J Comput Assist Radiol Surg, 2017, 12(4): 595-606.
|
41. |
Pongrácz F, Bárdosi Z. Dentition planning with image-based occlusion analysis. International Journal of Computer Assisted Radiology and Surgery, 2006, 1(3): 149-156.
|
42. |
Nadjmi N, Mollemans W, Daelemans A, et al. Virtual occlusion in planning orthognathic surgical procedures. Int J Oral Maxillofac Surg, 2010, 39(5): 457-462.
|
43. |
Awad D, Häfner A, Reinert S, et al. Plaster casts vs. intraoral scans:Do different methods of determining the final occlusion affect the simulated outcome in orthognathic surgery? J Pers Med, 2022, 12(8): 1288. doi: 10.3390/jpm12081288.
|
44. |
Baan F, Van Meggelen EM, Verhulst AC, et al. Virtual occlusion in orthognathic surgery. Int J Oral Maxillofac Surg, 2021, 50(9): 1219-1225.
|
45. |
Chang YB, Xia JJ, Gateno J, et al. An automatic and robust algorithm of reestablishment of digital dental occlusion. IEEE Trans Med Imaging, 2010, 29(9): 1652-1663.
|
46. |
Deng H, Yuan P, Wong S, et al. An automatic approach to establish clinically desired final dental occlusion for one-piece maxillary orthognathic surgery. Int J Oral Maxillofac Surg, 2020, 15(11): 1763-1773.
|
47. |
Wong S, Deng H, Gateno J, et al. Clinical evaluation of digital dental articulation for one-piece maxillary surgery. J Oral Maxillofac Surge, 2020, 78(5): 799-805.
|
48. |
Zhang J, Xia JJ, Li J, et al. Reconstruction-based digital dental occlusion of the partially edentulous dentition. IEEE J Biomed Health Inform, 2017, 21(1): 201-210.
|
49. |
Chang YB, Xia JJ, Gateno J, et al. In vitro evaluation of new approach to digital dental model articulation. J Oral Maxillofac Surg, 2012, 70(4): 952-962.
|
50. |
Khosravi-Kamrani P, Qiao X, Zanardi G, et al. A machine learning approach to determine the prognosis of patients with Class Ⅲ malocclusion. Am J Orthod Dentofacial Orthop, 2022, 161(1): e1-e11.
|