1. |
Cheatham SA, Johnson DL. Anatomic revision ACL reconstruction. Sports Med Arthrosc Rev, 2010, 18(1): 33-39.
|
2. |
Shen X, Qin Y, Zuo J, et al. A systematic review of risk factors for anterior cruciate ligament reconstruction failure. Int J Sports Med, 2021, 42(8): 682-693.
|
3. |
Patel NA, Choi JH, Wang D. Tibial fixation techniques for soft-tissue grafts in anterior cruciate ligament reconstruction. JBJS Rev, 2019, 7(12): e7.
|
4. |
Pereira VL, Medeiros JV, Nunes GRS, et al. Tibial-graft fixation methods on anterior cruciate ligament reconstructions: a literature review. Knee Surg Relat Res, 2021, 33(1): 7.
|
5. |
周敬滨, ZacharyWorking, CarolaF. vanEck, 等. 前交叉韧带解剖重建理念与方法. 中国运动医学杂志, 2011, 30(6): 511-518.
|
6. |
Kim HS, Seon JK, Jo AR. Current trends in anterior cruciate ligament reconstruction. Knee Surg Relat Res, 2013, 25(4): 165-173.
|
7. |
Lubowitz JH. Anatomic ACL reconstruction produces greater graft length change during knee range-of-motion than transtibial technique. Knee Surg Sports Traumatol Arthrosc, 2014, 22(5): 1190-1195.
|
8. |
Ohuchi H. Editorial Commentary: Full extension or 30° flexion in graft fixation for anatomic anterior cruciate ligament reconstruction. Is this surgeons’ preference? Arthroscopy, 2016, 32(11): 2329-2330.
|
9. |
Debandi A, Maeyama A, Hoshino Y, et al. The influence of knee flexion angle for graft fixation on rotational knee stability during anterior cruciate ligament reconstruction: A biomechanical study. Arthroscopy, 2016, 32(11): 2322-2328.
|
10. |
Miura K, Woo SL, Brinkley R, et al. Effects of knee flexion angles for graft fixation on force distribution in double-bundle anterior cruciate ligament grafts. Am J Sports Med, 2006, 34(4): 577-585.
|
11. |
Brady MF, Bradley MP, Fleming BC, et al. Effects of initial graft tension on the tibiofemoral compressive forces and joint position after anterior cruciate ligament reconstruction. Am J Sports Med, 2007, 35(3): 395-403.
|
12. |
Austin JC, Phornphutkul C, Wojtys EM. Loss of knee extension after anterior cruciate ligament reconstruction: effects of knee position and graft tensioning. J Bone Joint Surg (Am), 2007, 89(7): 1565-1574.
|
13. |
Scholes C, Ektas N, Harrison-Brown M, et al. Persistent knee extension deficits are common after anterior cruciate ligament reconstruction: a systematic review and meta-analysis of randomised controlled trials. Knee Surg Sports Traumatol Arthrosc, 2023, 31(8): 3172-3185.
|
14. |
Delaloye JR, Murar J, Vieira TD, et al. Knee extension deficit in the early postoperative period predisposes to cyclops syndrome after anterior cruciate ligament reconstruction: A risk factor analysis in 3633 patients from the SANTI Study Group Database. Am J Sports Med, 2020, 48(3): 565-572.
|
15. |
Titchenal MR, Chu CR, Erhart-Hledik JC, et al. Early changes in knee center of rotation during walking after anterior cruciate ligament reconstruction correlate with later changes in patient-reported outcomes. Am J Sports Med, 2017, 45(4): 915-921.
|
16. |
Nabors ED, Richmond JC, Vannah WM, et al. Anterior cruciate ligament graft tensioning in full extension. Am J Sports Med, 1995, 23(4): 488-492.
|
17. |
Kim YK, Yoo JD, Kim SW, et al. Intraoperative graft isometry in anatomic single-bundle anterior cruciate ligament reconstruction. Knee Surg Relat Res, 2018, 30(2): 115-120.
|
18. |
Mae T, Shino K, Nakata K, et al. Optimization of graft fixation at the time of anterior cruciate ligament reconstruction. Part Ⅱ: effect of knee flexion angle. Am J Sports Med, 2008, 36(6): 1094-1100.
|
19. |
Chahal J, Whelan DB, Hoit G, et al. Anterior cruciate ligament patellar tendon autograft fixation at 0° versus 30° results in improved activity scores and a greater proportion of patients achieving the minimal clinical important difference for knee injury and osteoarthritis outcome score pain: A randomized controlled trial. Arthroscopy, 2022, 38(6): 1969-1977.
|
20. |
Kirwan GW, Bourke MG, Chipchase L, et al. Graft tensioning practices in anterior cruciate ligament reconstruction amongst orthopaedic surgeons in Australia: a national survey. Arch Orthop Trauma Surg, 2015, 135(12): 1733-1741.
|
21. |
O’Neill BJ, Byrne FJ, Hirpara KM, et al. Anterior cruciate ligament graft tensioning. Is the maximal sustained one-handed pull technique reproducible? BMC Res Notes, 2011, 4: 244.
|
22. |
Morrison L, Haldane C, de Sa D, et al. Device-assisted tensioning is associated with lower rates of graft failure when compared to manual tensioning in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc, 2018, 26(12): 3690-3698.
|
23. |
Jisa KA, Williams BT, Jaglowski JR, et al. Lack of consensus regarding pretensioning and preconditioning protocols for soft tissue graft reconstruction of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc, 2016, 24(9): 2884-2891.
|
24. |
Kirwan GW, Bourke MG, Chipchase L, et al. Initial graft tension and the effect on postoperative patient functional outcomes in anterior cruciate ligament reconstruction. Arthroscopy, 2013, 29(5): 934-941.
|
25. |
Ma R, Schär M, Chen T, et al. Effect of dynamic changes in anterior cruciate ligament in situ graft force on the biological healing response of the graft-tunnel interface. Am J Sports Med, 2018, 46(4): 915-923.
|
26. |
Höher J, Kanamori A, Zeminski J, et al. The position of the tibia during graft fixation affects knee kinematics and graft forces for anterior cruciate ligament reconstruction. Am J Sports Med, 2001, 29(6): 771-776.
|
27. |
Asai K, Nakase J, Yoshimizu R, et al. High initial graft tension is a post-operative risk factor for high UTE T2* value of the graft 6 months after anterior cruciate ligament reconstruction. Knee, 2023, 40: 143-151.
|
28. |
Kim SG, Kurosawa H, Sakuraba K, et al. The effect of initial graft tension on postoperative clinical outcome in anterior cruciate ligament reconstruction with semitendinosus tendon. Arch Orthop Trauma Surg, 2006, 126(4): 260-264.
|
29. |
Cebesoy O. How much initial graft tension is sufficient for anterior cruciate ligament reconstruction? Arch Orthop Trauma Surg, 2007, 127(4): 307-308.
|
30. |
Nicholas SJ, D’Amato MJ, Mullaney MJ, et al. A prospectively randomized double-blind study on the effect of initial graft tension on knee stability after anterior cruciate ligament reconstruction. Am J Sports Med, 2004, 32(8): 1881-1886.
|
31. |
Taketomi S, Inui H, Tahara K, et al. Effects of initial graft tension on femoral tunnel widening after anatomic anterior cruciate ligament reconstruction using a bone-patellar tendon-bone graft. Arch Orthop Trauma Surg, 2017, 137(9): 1285-1291.
|
32. |
Tahara K, Yamagami R, Taketomi S, et al. High initial graft tension increases external tibial rotation on the axial plane after anatomical anterior cruciate ligament reconstruction. Arch Orthop Trauma Surg, 2022, 142(7): 1597-1604.
|
33. |
Takagi K, Taketomi S, Inui H, et al. The effects of initial graft tension on femorotibial relationship following anatomical rectangular tunnel anterior cruciate ligament reconstruction using bone-patellar tendon-bone graft. Knee, 2022, 37: 112-120.
|
34. |
Fleming BC, Fadale PD, Hulstyn MJ, et al. The effect of initial graft tension after anterior cruciate ligament reconstruction: a randomized clinical trial with 36-month follow-up. Am J Sports Med, 2013, 41(1): 25-34.
|
35. |
Akelman MR, Fadale PD, Hulstyn MJ, et al. Effect of matching or overconstraining knee laxity during anterior cruciate ligament reconstruction on knee osteoarthritis and clinical outcomes: A randomized controlled trial with 84-month follow-up. Am J Sports Med, 2016, 44(7): 1660-1670.
|
36. |
DeFroda SF, Karamchedu NP, Owens BD, et al. Tibial tunnel widening following anterior cruciate ligament reconstruction: A retrospective seven-year study evaluating the effects of initial graft tensioning and graft selection. Knee, 2018, 25(6): 1107-1114.
|
37. |
DeFroda SF, Karamchedu NP, Budacki R, et al. Evaluation of graft tensioning effects in anterior cruciate ligament reconstruction between hamstring and bone-patellar tendon bone autografts. J Knee Surg, 2021, 34(7): 777-783.
|
38. |
熊波涵, 余洋, 卢晓君, 等. 促进前交叉韧带重建腱骨愈合的研究与进展. 中国组织工程研究, 2023, 27(5): 779-786.
|
39. |
Harvey A, Thomas NP, Amis AA. Fixation of the graft in reconstruction of the anterior cruciate ligament. J Bone Joint Surg (Br), 2005, 87(5): 593-603.
|
40. |
Sharp JW, Kani KK, Gee A, et al. Anterior cruciate ligament fixation devices: Expected imaging appearance and common complications. Eur J Radiol, 2018, 99: 17-27.
|
41. |
Hakimi M, Anand S, Sahu A, et al. ACL reconstruction-current UK practice. J Bone Joint Surg (Br), 2012, 94B: 42.
|
42. |
Mahnik A, Mahnik S, Dimnjakovic D, et al. Current practice variations in the management of anterior cruciate ligament injuries in Croatia. World J Orthop, 2013, 4(4): 309-315.
|
43. |
Figueroa D, Calvo R, Vaisman A. Variation in the length of the tibial tunnel in anterior cruciate ligament reconstruction: is it safe to use a 35-mm screw? Arthroscopy, 2006, 22(5): 573. e1-e3.
|
44. |
Lind M, Feller J, Webster KE. Tibial bone tunnel widening is reduced by polylactate/hydroxyapatite interference screws compared to metal screws after ACL reconstruction with hamstring grafts. Knee, 2009, 16(6): 447-451.
|
45. |
Lee JJ, Otarodifard K, Jun BJ, et al. Is supplementary fixation necessary in anterior cruciate ligament reconstructions? Am J Sports Med, 2011, 39(2): 360-365.
|
46. |
Teo WW, Yeoh CS, Wee TH. Tibial fixation in anterior cruciate ligament reconstruction. J Orthop Surg (Hong Kong), 2017, 25(1): 2309499017699743.
|
47. |
Barbosa NC, Campos JP, Capelão V, et al. A comprehensive scoping review of tibial cysts after anterior cruciate ligament reconstruction. J Exp Orthop, 2021, 8(1): 40.
|
48. |
Ramsingh V, Prasad N, Lewis M. Pre-tibial reaction to biointerference screw in anterior cruciate ligament reconstruction. Knee, 2014, 21(1): 91-94.
|
49. |
Gonzalez-Lomas G, Cassilly RT, Remotti F, et al. Is the etiology of pretibial cyst formation after absorbable interference screw use related to a foreign body reaction? Clin Orthop Relat Res, 2011, 469(4): 1082-1088.
|
50. |
Konan S, Haddad FS. A clinical review of bioabsorbable interference screws and their adverse effects in anterior cruciate ligament reconstruction surgery. Knee, 2009, 16(1): 6-13.
|
51. |
Kruppa P, Flies A, Wulsten D, et al. Significant loss of acl graft force with tibial-sided soft tissue interference screw fixation over 24 hours: a biomechanical study. Orthop J Sports Med, 2020, 8(5): 2325967120916437.
|
52. |
Hapa O, Barber FA. ACL fixation devices. Sports Med Arthrosc Rev, 2009, 17(4): 217-223.
|
53. |
De Wall M, Scholes CJ, Patel S, et al. Tibial fixation in anterior cruciate ligament reconstruction: a prospective randomized study comparing metal interference screw and staples with a centrally placed polyethylene screw and sheath. Am J Sports Med, 2011, 39(9): 1858-1864.
|
54. |
Carulli C, Matassi F, Soderi S, et al. Resorbable screw and sheath versus resorbable interference screw and staples for ACL reconstruction: a comparison of two tibial fixation methods. Knee Surg Sports Traumatol Arthrosc, 2017, 25(4): 1264-1271.
|
55. |
Scannell BP, Loeffler BJ, Hoenig M, et al. Biomechanical comparison of hamstring tendon fixation devices for anterior cruciate ligament reconstruction: Part 2. Four tibial devices. Am J Orthop (Belle Mead NJ), 2015, 44(2): 82-85.
|
56. |
Kousa P, Järvinen TL, Vihavainen M, et al. The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part Ⅱ: tibial site. Am J Sports Med, 2003, 31(2): 182-188.
|
57. |
Lubowitz JH, Ahmad CS, Anderson K. All-inside anterior cruciate ligament graft-link technique: second-generation, no-incision anterior cruciate ligament reconstruction. Arthroscopy, 2011, 27(5): 717-727.
|
58. |
冯建豪, 徐一宏, 徐卫东. 全内技术重建前十字韧带的发展、演变和临床意义的研究进展. 中华骨科杂志, 2023, 43(8): 526-533.
|
59. |
Mayr R, Heinrichs CH, Eichinger M, et al. Biomechanical comparison of 2 anterior cruciate ligament graft preparation techniques for tibial fixation: adjustable-length loop cortical button or interference screw. Am J Sports Med, 2015, 43(6): 1380-1385.
|
60. |
Mahirogullari M, Kehribar L, Surucu S, et al. Comparative results of anterior cruciate ligament reconstruction with full tibial tunnel: Quadrupled semitendinosus suspensory femoral and tibial fixation versus quadrupled semitendinosus and gracilis suspensory femoral and tibial screw and staple fixation. J Knee Surg, 2023, 36(10): 1069-1076.
|
61. |
Nuelle CW, Balldin BC, Slone HS. All-inside anterior cruciate ligament reconstruction. Arthroscopy, 2022, 38(8): 2368-2369.
|
62. |
刘玉杰, 李海峰, 王俊良, 等. 腘绳肌腱移植股骨与胫骨端可吸收横钉固定法重建前交叉韧带. 中华医学杂志, 2009, 89(29): 2034-2037.
|
63. |
Fan H, Wang J, Fu Y, et al. A security evaluation of the Rigid-fix crosses pin system used for anterior cruciate ligament reconstruction in tibial fixation site. Int J Clin Exp Med, 2014, 7(11): 4597-606.
|
64. |
Wang J, Fan HQ, Dai W, et al. Safety of the application of Rigidfix cross-pin system via different tibial tunnels for tibial fixation during anterior cruciate ligament reconstruction. BMC Musculoskelet Disord, 2020, 21(1): 736.
|
65. |
Balazs GC, Brelin AM, Grimm PD, et al. Hybrid tibia fixation of soft tissue grafts in anterior cruciate ligament reconstruction: A systematic review. Am J Sports Med, 2016, 44(10): 2724-2732.
|