- Department of Trauma Emergency Center, the Third Affiliated Hospital of Hebei Medical University, Shijiazhuang Hebei, 050051, P. R. China;
Citation: LIU Jialun, ZHANG Yingze, ZHENG Zhanle. Research progress on biomechanics for internal fixation in tibial plateau fracture. Chinese Journal of Reparative and Reconstructive Surgery, 2024, 38(1): 113-118. doi: 10.7507/1002-1892.202309077 Copy
1. | 张英泽. 临床创伤骨科流行病学. 北京: 人民卫生出版社, 2014: 290-291. |
2. | Burdin G. Arthroscopic management of tibial plateau fractures: surgical technique. Orthop Traumatol Surg Res, 2013, 99(1 Suppl): S208-S218. |
3. | Thomas Ch, Athanasiov A, Wullschleger M, et al. Current concepts in tibial plateau fractures. Acta Chir Orthop Traumatol Cech, 2009, 76(5): 363-373. |
4. | 于沂阳, 常恒瑞, 李石伦, 等. 2010年至2011年中国东部地区与西部地区成人胫骨平台骨折的流行病学对比分析. 中华创伤骨科杂志, 2017, 19(10): 861-865. |
5. | 朱燕宾, 侯志勇, 金柱成, 等. 2010年至2011年华北五省市18所医院胫骨平台骨折流行病学调查研究. 中华创伤骨科杂志, 2020, 22(8): 682-686. |
6. | Greimel F, Weber M, Renkawitz T, et al. Minimally invasive treatment of tibial plateau depression fractures using balloon tibioplasty: Clinical outcome and absorption of bioabsorbable calcium phosphate cement. J Orthop Surg (Hong Kong), 2020, 28(1): 2309499020908721. |
7. | Prat-Fabregat S, Camacho-Carrasco P. Treatment strategy for tibial plateau fractures: an update. EFORT Open Rev, 2017, 1(5): 225-232. |
8. | Menzdorf L, Drenck T, Akoto R, et al. Clinical results after surgical treatment of posterolateral tibial plateau fractures (“apple bite fracture”) in combination with ACL injuries. Eur J Trauma Emerg Surg, 2020, 46(6): 1239-1248. |
9. | Fändriks A, Tranberg R, Karlsson J, et al. Gait biomechanics in patients with intra-articular tibial plateau fractures-gait analysis at three months compared with age- and gender-matched healthy subjects. BMC Musculoskelet Disord, 2021, 22(1): 702. |
10. | Hashemi J, Chandrashekar N, Gill B, et al. The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg (Am), 2008, 90(12): 2724-2734. |
11. | Krause M, Hubert J, Deymann S, et al. Bone microarchitecture of the tibial plateau in skeletal health and osteoporosis. Knee, 2018, 25(4): 559-567. |
12. | 朱燕宾, 陈伟, 张奇, 等. 胫骨平台核心负重区的概念及其临床意义. 中华骨科杂志, 2021, 41(3): 137-140. |
13. | Schatzker J, McBroom R, Bruce D. The tibial plateau fracture. The Toronto experience 1968—1975. Clin Orthop Relat Res, 1979, (138): 94-104. |
14. | Giordano V, Belangero WD, Sá BA, et al. Plate-screw and screw-washer stability in a Schatzker type-Ⅰ lateral tibial plateau fracture: a comparative biomechanical study. Rev Col Bras Cir, 2020, 47: e20202546. |
15. | Kfuri M, Schatzker J. Revisiting the Schatzker classification of tibial plateau fractures. Injury, 2018, 49(12): 2252-2263. |
16. | Parker PJ, Tepper KB, Brumback RJ, et al. Biomechanical comparison of fixation of type-Ⅰ fractures of the lateral tibial plateau. Is the antiglide screw effective? J Bone Joint Surg (Br), 1999, 81(3): 478-480. |
17. | Moran E, Zderic I, Klos K, et al. Reconstruction of the lateral tibia plateau fracture with a third triangular support screw: A biomechanical study. J Orthop Translat, 2017, 11: 30-38. |
18. | Petersen W, Zantop T, Raschke M. Tibial head fracture open reposition and osteosynthesis—arthroscopic reposition and osteosynthesis (ARIF). Unfallchirurg, 2006, 109(3): 235-244. |
19. | Weimann A, Heinkele T, Herbort M, et al. Minimally invasive reconstruction of lateral tibial plateau fractures using the jail technique: a biomechanical study. BMC Musculoskelet Disord, 2013, 14: 120. |
20. | 张玺, 孙杰, 李方国, 等. 交叉排钉技术对防止胫骨外侧平台骨折术后关节面塌陷的价值. 中华骨科杂志, 2018, 38(15): 897-904. |
21. | Ren P, Niu H, Gong H, et al. Morphological, biochemical and mechanical properties of articular cartilage and subchondral bone in rat tibial plateau are age related. J Anat, 2018, 232(3): 457-471. |
22. | Ye X, Huang D, Perriman DM, et al. Influence of screw to joint distance on articular subsidence in tibial-plateau fractures. ANZ J Surg, 2019, 89(4): 320-324. |
23. | 孔祥如, 杨春, 单宇宙, 等. 胫骨近端外侧锁定接骨板排筏螺钉联合Jail螺钉治疗胫骨平台外侧塌陷骨折. 中华创伤杂志, 2022, 38(6): 510-516. |
24. | Salduz A, Birisik F, Polat G, et al. The effect of screw thread length on initial stability of Schatzker type 1 tibial plateau fracture fixation: a biomechanical study. J Orthop Surg Res, 2016, 11(1): 146. |
25. | Hasan S, Ayalon OB, Yoon RS, et al. A biomechanical comparison between locked 3.5-mm plates and 4.5-mm plates for the treatment of simple bicondylar tibial plateau fractures: is bigger necessarily better? J Orthop Traumatol, 2014, 15(2): 123-129. |
26. | 陈轶腾, 屠震宇, 严战涛, 等. 单侧和双侧钢板内固定治疗Schatzker Ⅵ型胫骨平台骨折患者的临床疗效比较. 中华老年医学杂志, 2017, 36(9): 992-994. |
27. | 杨宗酉, 程晓东, 朱炼, 等. 内侧和外侧锁定钢板固定Schatzker Ⅵ型胫骨平台骨折的有限元分析. 中华创伤骨科杂志, 2018, 20(2): 157-161. |
28. | Neogi DS, Trikha V, Mishra KK, et al. Comparative study of single lateral locked plating versus double plating in type C bicondylar tibial plateau fractures. Indian J Orthop, 2015, 49(2): 193-198. |
29. | Lee AK, Cooper SA, Collinge C. Bicondylar tibial plateau fractures: A critical analysis review. JBJS Rev, 2018, 6(2): e4. |
30. | Dehoust J, Münch M, Seide K, et al. Biomechanical aspects of the posteromedial split in bicondylar tibial plateau fractures-a finite-element investigation. Eur J Trauma Emerg Surg, 2020, 46(6): 1257-1266. |
31. | Chang H, Zhu Y, Zheng Z, et al. Meta-analysis shows that highly comminuted bicondylar tibial plateau fractures treated by single lateral locking plate give similar outcomes as dual plate fixation. Int Orthop, 2016, 40(10): 2129-2141. |
32. | Wei G, Niu X, Li Y, et al. Biomechanical analysis of internal fixation system stability for tibial plateau fractures. Front Bioeng Biotechnol, 2023, 11: 1199944. |
33. | Thamyongkit S, Abbasi P, Parks BG, et al. Weightbearing after combined medial and lateral plate fixation of AO/OTA 41-C2 bicondylar tibial plateau fractures: a biomechanical study. BMC Musculoskelet Disord, 2022, 23(1): 86. |
34. | Scolaro JA, Wright DJ, Lai W, et al. Fixation of extra-articular proximal tibia fractures: biomechanical comparison of single and dual implant constructs. J Am Acad Orthop Surg, 2022, 30(13): 629-635. |
35. | Kumar V, Singhroha M, Arora K, et al. A clinico-radiological study of bicondylar tibial plateau fractures managed with dual locking plates. J Clin Orthop Trauma, 2021, 21: 101563. |
36. | 王博, 王娟, 郑占乐, 等. 自断加压骨栓联合接骨板治疗胫骨平台骨折的疗效. 中华创伤骨科杂志, 2021, 23(2): 111-115. |
37. | Lasanianos NG, Garnavos C, Magnisalis E, et al. A comparative biomechanical study for complex tibial plateau fractures: nailing and compression bolts versus modern and traditional plating. Injury, 2013, 44(10): 1333-1339. |
38. | Chen P, Lu H, Shen H, et al. Newly designed anterolateral and posterolateral locking anatomic plates for lateral tibial plateau fractures: a finite element study. J Orthop Surg Res, 2017, 12(1): 35. |
39. | Djuricic A, Gee A, Schemitsch EH, et al. Biomechanical design of a new percutaneous locked plate for comminuted proximal tibia fractures. Med Eng Phys, 2022, 104: 103801. |
40. | Yan B, Huang X, Xu Y, et al. A novel locking buttress plate designed for simultaneous medial and posterolateral tibial plateau fractures: concept and comparative finite element analysis. Orthop Surg, 2023, 15(4): 1104-1116. |
41. | Lu Y, Bai H, Wang Q, et al. The study of biomechanics and finite element analysis on a novel plate for tibial plateau fractures via anterolateral supra-fibular-head approach. Sci Rep, 2023, 13(1): 13516. |
42. | Gao S, Yao QC, Geng L, et al. A finite element analysis of the supportive effect of a new type of rotary support plate on lateral tibial plateau fractures. Ann Transl Med, 2022, 10(18): 1020. |
43. | Chen YF, Ren D, Geng LD, et al. Treatment of posterolateral tibial plateau fractures with a rotational support plate and special pressurizer: technical note and retrospective case series. J Orthop Surg Res, 2021, 16(1): 407. |
44. | Teo AQA, Ng DQK, Ramruttun AK, et al. Standard versus customised locking plates for fixation of schatzker ii tibial plateau fractures. Injury, 2022, 53(2): 676-682. |
45. | Williamson M, Iliopoulos E, Jain A, et al. Immediate weight bearing after plate fixation of fractures of the tibial plateau. Injury, 2018, 49(10): 1886-1890. |
46. | Faur CI, Niculescu B. Comparative biomechanical analysis of three implants used in bicondylar tibial fractures. Wien Med Wochenschr, 2018, 168(9-10): 254-260. |
47. | Zhang W, Luo CF, Putnis S, et al. Biomechanical analysis of four different fixations for the posterolateral shearing tibial plateau fracture. Knee, 2012, 19(2): 94-98. |
48. | 任伟志, 张文, 彭建, 等. 胫骨平台后外侧骨折新型接骨板的生物力学研究. 中华实验外科杂志, 2021, 38(12): 2461-2464. |
49. | 储旭东, 许斌, 钱华钧, 等. 胫骨平台后外侧髁解剖钢板的设计与生物力学研究. 中华创伤骨科杂志, 2020, 22(11): 978-982. |
50. | 张庆杰, 王永清, 周星衡, 等. 锁定多向带锁髓内钉与锁定接骨板固定胫骨平台骨折的有限元分析. 中华创伤骨科杂志, 2015, 17(3): 251-256. |
51. | Högel F, Hoffmann S, Panzer S, et al. Biomechanical comparison of intramedullar versus extramedullar stabilization of intra-articular tibial plateau fractures. Arch Orthop Trauma Surg, 2013, 133(1): 59-64. |
52. | Chen HW, Liu GD, Ou S, et al. Comparison of three fixations for tibial plateau fractures by biomechanical study and radiographic observation. Int J Surg, 2015, 13: 292-296. |
53. | Zeng C, Ren X, Xu C, et al. Stability of internal fixation systems based on different subtypes of Schatzker Ⅱ fracture of the tibial plateau: A finite element analysis. Front Bioeng Biotechnol, 2022, 10: 973389. |
54. | 郑占乐, 连晓东, 王博, 等. 经胫前隧道推顶复位胫骨平台塌陷骨折. 中华创伤骨科杂志, 2020, 22(8): 693-697. |
55. | 郑占乐, 刘欢, 邢欣, 等. 新型玻璃骨植骨微创治疗胫骨平台骨折的初步疗效. 中华创伤骨科杂志, 2019, 21(5): 455-460. |
56. | Hahnhaussen J, Hak DJ, Weckbach S, et al. Percutaneous inflation osteoplasty for indirect reduction of depressed tibial plateau fractures. Orthopedics, 2012, 35(9): 768-772. |
57. | Ollivier M, Turati M, Munier M, et al. Balloon tibioplasty for reduction of depressed tibial plateau fractures: Preliminary radiographic and clinical results. Int Orthop, 2016, 40(9): 1961-1966. |
58. | Mauffrey C, Roberts G, Cuellar DO, et al. Balloon tibioplasty: pearls and pitfalls. J Knee Surg, 2014, 27(1): 31-37. |
59. | Wang Z, Zhu Y, Deng X, et al. Structural bicortical autologous iliac crest bone graft combined with the tunnel bone tamping method for the depressed tibial plateau fractures. Biomed Res Int, 2021, 2021: 1249734. |
60. | Rolvien T, Barvencik F, Klatte TO, et al. β-TCP bone substitutes in tibial plateau depression fractures. Knee, 2017, 24(5): 1138-1145. |
61. | Iundusi R, Gasbarra E, D’Arienzo M, et al. Augmentation of tibial plateau fractures with an injectable bone substitute: CERAMENTTM. Three year follow-up from a prospective study. BMC Musculoskelet Disord, 2015, 16: 115. |
62. | Heilig P, Faerber LC, Paul MM, et al. Plate osteosynthesis combined with bone cement provides the highest stability for tibial head depression fractures under high loading conditions. Sci Rep, 2022, 12(1): 15481. |
63. | Belaid D, Vendeuvre T, Bouchoucha A, et al. Utility of cement injection to stabilize split-depression tibial plateau fracture by minimally invasive methods: A finite element analysis. Clin Biomech (Bristol, Avon), 2018, 56: 27-35. |
64. | Aubert K, Germaneau A, Rochette M, et al. Development of digital twins to optimize trauma surgery and postoperative management. A case study focusing on tibial plateau fracture. Front Bioeng Biotechnol, 2021, 9: 722275. |
65. | 邹华章, 廖威明, 段昕, 等. 新型可注射磷酸钙骨水泥在椎体后凸成形术中的生物力学评价. 中华生物医学工程杂志, 2011, 17(2): 151-155. |
66. | Wang Y, Luo C, Zhu Y, et al. Updated Three-Column Concept in surgical treatment for tibial plateau fractures—A prospective cohort study of 287 patients. Injury, 2016, 47(7): 1488-1496. |
67. | Parkkinen M, Lindahl J, Mäkinen TJ, et al. Predictors of osteoarthritis following operative treatment of medial tibial plateau fractures. Injury, 2018, 49(2): 370-375. |
68. | 王松柏, 陈春, 刘东旭, 等. 胫骨平台后外侧骨折三种入路的解剖学研究. 中华创伤骨科杂志, 2016, 18(10): 874-879. |
69. | Thewlis D, Fraysse F, Callary SA, et al. Postoperative weight bearing and patient reported outcomes at one year following tibial plateau fractures. Injury, 2017, 48(7): 1650-1656. |
70. | Shaw KA, Griffith MS, Shaw VM, et al. Harvesting autogenous cancellous bone graft from the anterior iliac crest. JBJS Essent Surg Tech, 2018, 8(3): e20. |
- 1. 张英泽. 临床创伤骨科流行病学. 北京: 人民卫生出版社, 2014: 290-291.
- 2. Burdin G. Arthroscopic management of tibial plateau fractures: surgical technique. Orthop Traumatol Surg Res, 2013, 99(1 Suppl): S208-S218.
- 3. Thomas Ch, Athanasiov A, Wullschleger M, et al. Current concepts in tibial plateau fractures. Acta Chir Orthop Traumatol Cech, 2009, 76(5): 363-373.
- 4. 于沂阳, 常恒瑞, 李石伦, 等. 2010年至2011年中国东部地区与西部地区成人胫骨平台骨折的流行病学对比分析. 中华创伤骨科杂志, 2017, 19(10): 861-865.
- 5. 朱燕宾, 侯志勇, 金柱成, 等. 2010年至2011年华北五省市18所医院胫骨平台骨折流行病学调查研究. 中华创伤骨科杂志, 2020, 22(8): 682-686.
- 6. Greimel F, Weber M, Renkawitz T, et al. Minimally invasive treatment of tibial plateau depression fractures using balloon tibioplasty: Clinical outcome and absorption of bioabsorbable calcium phosphate cement. J Orthop Surg (Hong Kong), 2020, 28(1): 2309499020908721.
- 7. Prat-Fabregat S, Camacho-Carrasco P. Treatment strategy for tibial plateau fractures: an update. EFORT Open Rev, 2017, 1(5): 225-232.
- 8. Menzdorf L, Drenck T, Akoto R, et al. Clinical results after surgical treatment of posterolateral tibial plateau fractures (“apple bite fracture”) in combination with ACL injuries. Eur J Trauma Emerg Surg, 2020, 46(6): 1239-1248.
- 9. Fändriks A, Tranberg R, Karlsson J, et al. Gait biomechanics in patients with intra-articular tibial plateau fractures-gait analysis at three months compared with age- and gender-matched healthy subjects. BMC Musculoskelet Disord, 2021, 22(1): 702.
- 10. Hashemi J, Chandrashekar N, Gill B, et al. The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg (Am), 2008, 90(12): 2724-2734.
- 11. Krause M, Hubert J, Deymann S, et al. Bone microarchitecture of the tibial plateau in skeletal health and osteoporosis. Knee, 2018, 25(4): 559-567.
- 12. 朱燕宾, 陈伟, 张奇, 等. 胫骨平台核心负重区的概念及其临床意义. 中华骨科杂志, 2021, 41(3): 137-140.
- 13. Schatzker J, McBroom R, Bruce D. The tibial plateau fracture. The Toronto experience 1968—1975. Clin Orthop Relat Res, 1979, (138): 94-104.
- 14. Giordano V, Belangero WD, Sá BA, et al. Plate-screw and screw-washer stability in a Schatzker type-Ⅰ lateral tibial plateau fracture: a comparative biomechanical study. Rev Col Bras Cir, 2020, 47: e20202546.
- 15. Kfuri M, Schatzker J. Revisiting the Schatzker classification of tibial plateau fractures. Injury, 2018, 49(12): 2252-2263.
- 16. Parker PJ, Tepper KB, Brumback RJ, et al. Biomechanical comparison of fixation of type-Ⅰ fractures of the lateral tibial plateau. Is the antiglide screw effective? J Bone Joint Surg (Br), 1999, 81(3): 478-480.
- 17. Moran E, Zderic I, Klos K, et al. Reconstruction of the lateral tibia plateau fracture with a third triangular support screw: A biomechanical study. J Orthop Translat, 2017, 11: 30-38.
- 18. Petersen W, Zantop T, Raschke M. Tibial head fracture open reposition and osteosynthesis—arthroscopic reposition and osteosynthesis (ARIF). Unfallchirurg, 2006, 109(3): 235-244.
- 19. Weimann A, Heinkele T, Herbort M, et al. Minimally invasive reconstruction of lateral tibial plateau fractures using the jail technique: a biomechanical study. BMC Musculoskelet Disord, 2013, 14: 120.
- 20. 张玺, 孙杰, 李方国, 等. 交叉排钉技术对防止胫骨外侧平台骨折术后关节面塌陷的价值. 中华骨科杂志, 2018, 38(15): 897-904.
- 21. Ren P, Niu H, Gong H, et al. Morphological, biochemical and mechanical properties of articular cartilage and subchondral bone in rat tibial plateau are age related. J Anat, 2018, 232(3): 457-471.
- 22. Ye X, Huang D, Perriman DM, et al. Influence of screw to joint distance on articular subsidence in tibial-plateau fractures. ANZ J Surg, 2019, 89(4): 320-324.
- 23. 孔祥如, 杨春, 单宇宙, 等. 胫骨近端外侧锁定接骨板排筏螺钉联合Jail螺钉治疗胫骨平台外侧塌陷骨折. 中华创伤杂志, 2022, 38(6): 510-516.
- 24. Salduz A, Birisik F, Polat G, et al. The effect of screw thread length on initial stability of Schatzker type 1 tibial plateau fracture fixation: a biomechanical study. J Orthop Surg Res, 2016, 11(1): 146.
- 25. Hasan S, Ayalon OB, Yoon RS, et al. A biomechanical comparison between locked 3.5-mm plates and 4.5-mm plates for the treatment of simple bicondylar tibial plateau fractures: is bigger necessarily better? J Orthop Traumatol, 2014, 15(2): 123-129.
- 26. 陈轶腾, 屠震宇, 严战涛, 等. 单侧和双侧钢板内固定治疗Schatzker Ⅵ型胫骨平台骨折患者的临床疗效比较. 中华老年医学杂志, 2017, 36(9): 992-994.
- 27. 杨宗酉, 程晓东, 朱炼, 等. 内侧和外侧锁定钢板固定Schatzker Ⅵ型胫骨平台骨折的有限元分析. 中华创伤骨科杂志, 2018, 20(2): 157-161.
- 28. Neogi DS, Trikha V, Mishra KK, et al. Comparative study of single lateral locked plating versus double plating in type C bicondylar tibial plateau fractures. Indian J Orthop, 2015, 49(2): 193-198.
- 29. Lee AK, Cooper SA, Collinge C. Bicondylar tibial plateau fractures: A critical analysis review. JBJS Rev, 2018, 6(2): e4.
- 30. Dehoust J, Münch M, Seide K, et al. Biomechanical aspects of the posteromedial split in bicondylar tibial plateau fractures-a finite-element investigation. Eur J Trauma Emerg Surg, 2020, 46(6): 1257-1266.
- 31. Chang H, Zhu Y, Zheng Z, et al. Meta-analysis shows that highly comminuted bicondylar tibial plateau fractures treated by single lateral locking plate give similar outcomes as dual plate fixation. Int Orthop, 2016, 40(10): 2129-2141.
- 32. Wei G, Niu X, Li Y, et al. Biomechanical analysis of internal fixation system stability for tibial plateau fractures. Front Bioeng Biotechnol, 2023, 11: 1199944.
- 33. Thamyongkit S, Abbasi P, Parks BG, et al. Weightbearing after combined medial and lateral plate fixation of AO/OTA 41-C2 bicondylar tibial plateau fractures: a biomechanical study. BMC Musculoskelet Disord, 2022, 23(1): 86.
- 34. Scolaro JA, Wright DJ, Lai W, et al. Fixation of extra-articular proximal tibia fractures: biomechanical comparison of single and dual implant constructs. J Am Acad Orthop Surg, 2022, 30(13): 629-635.
- 35. Kumar V, Singhroha M, Arora K, et al. A clinico-radiological study of bicondylar tibial plateau fractures managed with dual locking plates. J Clin Orthop Trauma, 2021, 21: 101563.
- 36. 王博, 王娟, 郑占乐, 等. 自断加压骨栓联合接骨板治疗胫骨平台骨折的疗效. 中华创伤骨科杂志, 2021, 23(2): 111-115.
- 37. Lasanianos NG, Garnavos C, Magnisalis E, et al. A comparative biomechanical study for complex tibial plateau fractures: nailing and compression bolts versus modern and traditional plating. Injury, 2013, 44(10): 1333-1339.
- 38. Chen P, Lu H, Shen H, et al. Newly designed anterolateral and posterolateral locking anatomic plates for lateral tibial plateau fractures: a finite element study. J Orthop Surg Res, 2017, 12(1): 35.
- 39. Djuricic A, Gee A, Schemitsch EH, et al. Biomechanical design of a new percutaneous locked plate for comminuted proximal tibia fractures. Med Eng Phys, 2022, 104: 103801.
- 40. Yan B, Huang X, Xu Y, et al. A novel locking buttress plate designed for simultaneous medial and posterolateral tibial plateau fractures: concept and comparative finite element analysis. Orthop Surg, 2023, 15(4): 1104-1116.
- 41. Lu Y, Bai H, Wang Q, et al. The study of biomechanics and finite element analysis on a novel plate for tibial plateau fractures via anterolateral supra-fibular-head approach. Sci Rep, 2023, 13(1): 13516.
- 42. Gao S, Yao QC, Geng L, et al. A finite element analysis of the supportive effect of a new type of rotary support plate on lateral tibial plateau fractures. Ann Transl Med, 2022, 10(18): 1020.
- 43. Chen YF, Ren D, Geng LD, et al. Treatment of posterolateral tibial plateau fractures with a rotational support plate and special pressurizer: technical note and retrospective case series. J Orthop Surg Res, 2021, 16(1): 407.
- 44. Teo AQA, Ng DQK, Ramruttun AK, et al. Standard versus customised locking plates for fixation of schatzker ii tibial plateau fractures. Injury, 2022, 53(2): 676-682.
- 45. Williamson M, Iliopoulos E, Jain A, et al. Immediate weight bearing after plate fixation of fractures of the tibial plateau. Injury, 2018, 49(10): 1886-1890.
- 46. Faur CI, Niculescu B. Comparative biomechanical analysis of three implants used in bicondylar tibial fractures. Wien Med Wochenschr, 2018, 168(9-10): 254-260.
- 47. Zhang W, Luo CF, Putnis S, et al. Biomechanical analysis of four different fixations for the posterolateral shearing tibial plateau fracture. Knee, 2012, 19(2): 94-98.
- 48. 任伟志, 张文, 彭建, 等. 胫骨平台后外侧骨折新型接骨板的生物力学研究. 中华实验外科杂志, 2021, 38(12): 2461-2464.
- 49. 储旭东, 许斌, 钱华钧, 等. 胫骨平台后外侧髁解剖钢板的设计与生物力学研究. 中华创伤骨科杂志, 2020, 22(11): 978-982.
- 50. 张庆杰, 王永清, 周星衡, 等. 锁定多向带锁髓内钉与锁定接骨板固定胫骨平台骨折的有限元分析. 中华创伤骨科杂志, 2015, 17(3): 251-256.
- 51. Högel F, Hoffmann S, Panzer S, et al. Biomechanical comparison of intramedullar versus extramedullar stabilization of intra-articular tibial plateau fractures. Arch Orthop Trauma Surg, 2013, 133(1): 59-64.
- 52. Chen HW, Liu GD, Ou S, et al. Comparison of three fixations for tibial plateau fractures by biomechanical study and radiographic observation. Int J Surg, 2015, 13: 292-296.
- 53. Zeng C, Ren X, Xu C, et al. Stability of internal fixation systems based on different subtypes of Schatzker Ⅱ fracture of the tibial plateau: A finite element analysis. Front Bioeng Biotechnol, 2022, 10: 973389.
- 54. 郑占乐, 连晓东, 王博, 等. 经胫前隧道推顶复位胫骨平台塌陷骨折. 中华创伤骨科杂志, 2020, 22(8): 693-697.
- 55. 郑占乐, 刘欢, 邢欣, 等. 新型玻璃骨植骨微创治疗胫骨平台骨折的初步疗效. 中华创伤骨科杂志, 2019, 21(5): 455-460.
- 56. Hahnhaussen J, Hak DJ, Weckbach S, et al. Percutaneous inflation osteoplasty for indirect reduction of depressed tibial plateau fractures. Orthopedics, 2012, 35(9): 768-772.
- 57. Ollivier M, Turati M, Munier M, et al. Balloon tibioplasty for reduction of depressed tibial plateau fractures: Preliminary radiographic and clinical results. Int Orthop, 2016, 40(9): 1961-1966.
- 58. Mauffrey C, Roberts G, Cuellar DO, et al. Balloon tibioplasty: pearls and pitfalls. J Knee Surg, 2014, 27(1): 31-37.
- 59. Wang Z, Zhu Y, Deng X, et al. Structural bicortical autologous iliac crest bone graft combined with the tunnel bone tamping method for the depressed tibial plateau fractures. Biomed Res Int, 2021, 2021: 1249734.
- 60. Rolvien T, Barvencik F, Klatte TO, et al. β-TCP bone substitutes in tibial plateau depression fractures. Knee, 2017, 24(5): 1138-1145.
- 61. Iundusi R, Gasbarra E, D’Arienzo M, et al. Augmentation of tibial plateau fractures with an injectable bone substitute: CERAMENTTM. Three year follow-up from a prospective study. BMC Musculoskelet Disord, 2015, 16: 115.
- 62. Heilig P, Faerber LC, Paul MM, et al. Plate osteosynthesis combined with bone cement provides the highest stability for tibial head depression fractures under high loading conditions. Sci Rep, 2022, 12(1): 15481.
- 63. Belaid D, Vendeuvre T, Bouchoucha A, et al. Utility of cement injection to stabilize split-depression tibial plateau fracture by minimally invasive methods: A finite element analysis. Clin Biomech (Bristol, Avon), 2018, 56: 27-35.
- 64. Aubert K, Germaneau A, Rochette M, et al. Development of digital twins to optimize trauma surgery and postoperative management. A case study focusing on tibial plateau fracture. Front Bioeng Biotechnol, 2021, 9: 722275.
- 65. 邹华章, 廖威明, 段昕, 等. 新型可注射磷酸钙骨水泥在椎体后凸成形术中的生物力学评价. 中华生物医学工程杂志, 2011, 17(2): 151-155.
- 66. Wang Y, Luo C, Zhu Y, et al. Updated Three-Column Concept in surgical treatment for tibial plateau fractures—A prospective cohort study of 287 patients. Injury, 2016, 47(7): 1488-1496.
- 67. Parkkinen M, Lindahl J, Mäkinen TJ, et al. Predictors of osteoarthritis following operative treatment of medial tibial plateau fractures. Injury, 2018, 49(2): 370-375.
- 68. 王松柏, 陈春, 刘东旭, 等. 胫骨平台后外侧骨折三种入路的解剖学研究. 中华创伤骨科杂志, 2016, 18(10): 874-879.
- 69. Thewlis D, Fraysse F, Callary SA, et al. Postoperative weight bearing and patient reported outcomes at one year following tibial plateau fractures. Injury, 2017, 48(7): 1650-1656.
- 70. Shaw KA, Griffith MS, Shaw VM, et al. Harvesting autogenous cancellous bone graft from the anterior iliac crest. JBJS Essent Surg Tech, 2018, 8(3): e20.