- Stem Cell and Tissue Engineering Research Center, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China;
Citation: ZHANG Xiuzhen, WANG Jiawei, XIE Huiqi. Application and progress of bio-derived materials in bladder regeneration and repair. Chinese Journal of Reparative and Reconstructive Surgery, 2024, 38(11): 1299-1306. doi: 10.7507/1002-1892.202404099 Copy
1. | Adamowicz J, Kowalczyk T, Drewa T. Tissue engineering of urinary bladder_current state of art and future perspectives. Cent European J Urol, 2013, 66(2): 202-206. |
2. | Nurse DE, Britton JP, Mundy AR. Relative indications for orthotopic lower urinary tract reconstruction, continent urinary diversion and conduit urinary diversion. Br J Urol, 1993, 71(5): 562-565. |
3. | Liu X, Wang J, Ren L, et al. Bladder replacement therapy. Bladder (San Franc), 2023, 10: e21200010. doi: 10.14440/bladder.2023.869. |
4. | Arabzadeh Bahri R, Peisepar M, Maleki S, et al. Current evidence regarding alternative techniques for enterocystoplasty using regenerative medicine methods: a systematic review. Eur J Med Res, 2024, 29(1): 163. doi: 10.1186/s40001-024-01757-z. |
5. | 张秀珍, 陈秋竹, 张艺琪. 膀胱组织工程研究进展. 生物医学工程学杂志, 2020, 37(2): 200-206. |
6. | Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng, 2011, 2: 403-430. |
7. | Garriboli M, Deguchi K, Totonelli G, et al. Development of a porcine acellular bladder matrix for tissue-engineered bladder reconstruction. Pediatr Surg Int, 2022, 38(5): 665-677. |
8. | Casarin M, Fortunato TM, Imran S, et al. Porcine small intestinal submucosa (SIS) as a suitable scaffold for the creation of a tissue-engineered urinary conduit: decellularization, biomechanical and biocompatibility characterization using new approaches. Int J Mol Sci, 2022, 23(5): 2826. doi: 10.3390/ijms23052826. |
9. | Lin HK, Godiwalla SY, Palmer B, et al. Understanding roles of porcine small intestinal submucosa in urinary bladder regeneration: identification of variable regenerative characteristics of small intestinal submucosa. Tissue Eng Part B Rev, 2014, 20(1): 73-83. |
10. | Desai N, Rana D, Salave S, et al. Chitosan: A potential biopolymer in drug delivery and biomedical applications. Pharmaceutics, 2023, 15(4): 1313. doi: 10.3390/pharmaceutics15041313. |
11. | Ławkowska K, Rosenbaum C, Petrasz P, et al. Tissue engineering in reconstructive urology-The current status and critical insights to set future directions-critical review. Front Bioeng Biotechnol, 2023, 10: 1040987. doi: 10.3389/fbioe.2022.1040987. |
12. | Tu DD, Chung YG, Gil ES, et al. Bladder tissue regeneration using acellular bi-layer silk scaffolds in a large animal model of augmentation cystoplasty. Biomaterials, 2013, 34(34): 8681-8689. |
13. | Sack BS, Mauney JR, Estrada CR. Silk fibroin scaffolds for urologic tissue engineering. Curr Urol Rep, 2016, 17(2): 16. doi: 10.1007/s11934-015-0567-x. |
14. | Syed O, Walters NJ, Day RM, et al. Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomater, 2014, 10(12): 5043-5054. |
15. | Zhao Y, Peng H, Sun L, et al. The application of small intestinal submucosa in tissue regeneration. Mater Today Bio, 2024, 26: 101032. doi: 10.1016/j.mtbio.2024.101032. |
16. | 朱黄凯, 赵基源. 小肠黏膜下层用于软组织修复的研究进展. 生物医学工程学杂志, 2016, 33(4): 816-820. |
17. | Voytik-Harbin SL, Brightman AO, Kraine MR, et al. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem, 1997, 67(4): 478-491. |
18. | Campodonico F, Benelli R, Michelazzi A, et al. Bladder cell culture on small intestinal submucosa as bioscaffold: experimental study on engineered urothelial grafts. Eur Urol, 2004, 46(4): 531-537. |
19. | Pariente JL, Kim BS, Atala A. In vitro biocompatibility assessment of naturally derived and synthetic biomaterials using normal human urothelial cells. J Biomed Mater Res, 2001, 55(1): 33-39. |
20. | Song YT, Li YQ, Tian MX, et al. Application of antibody-conjugated small intestine submucosa to capture urine-derived stem cells for bladder repair in a rabbit model. Bioact Mater, 2022, 14: 443-455. |
21. | Jiwangga D, Mahyudin F, Mastutik G, et al. Current strategies for tracheal decellularization: a systematic review. Int J Biomater, 2024, 2024: 3355239. doi: 10.1155/2024/3355239. |
22. | Sutherland RS, Baskin LS, Hayward SW, et al. Regeneration of bladder urothelium, smooth muscle, blood vessels and nerves into an acellular tissue matrix. J Urol, 1996, 156(2 Pt 2): 571-577. |
23. | Kropp BP, Badylak S, Thor KB. Regenerative bladder augmentation: a review of the initial preclinical studies with porcine small intestinal submucosa. Adv Exp Med Biol, 1995, 385: 229-235. |
24. | Song L, Murphy SV, Yang B, et al. Bladder acellular matrix and its application in bladder augmentation. Tissue Eng Part B Rev, 2014, 20(2): 163-172. |
25. | Farhat WA, Chen J, Haig J, et al. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties. Biomed Mater, 2008, 3(2): 025015. doi: 10.1088/1748-6041/3/2/025015. |
26. | Ajalloueian F, Lemon G, Hilborn J, et al. Bladder biomechanics and the use of scaffolds for regenerative medicine in the urinary bladder. Nat Rev Urol, 2018, 15(3): 155-174. |
27. | Chun SY, Lim GJ, Kwon TG, et al. Identification and characterization of bioactive factors in bladder submucosa matrix. Biomaterials, 2007, 28(29): 4251-4256. |
28. | Yoo JJ, Meng J, Oberpenning F, et al. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology, 1998, 51(2): 221-225. |
29. | Obara T, Matsuura S, Narita S, et al. Bladder acellular matrix grafting regenerates urinary bladder in the spinal cord injury rat. Urology, 2006, 68(4): 892-897. |
30. | Urakami S, Shiina H, Enokida H, et al. Functional improvement in spinal cord injury-induced neurogenic bladder by bladder augmentation using bladder acellular matrix graft in the rat. World J Urol, 2007, 25(2): 207-213. |
31. | Seth A, Chung YG, Gil ES, et al. The performance of silk scaffolds in a rat model of augmentation cystoplasty. Biomaterials, 2013, 34(20): 4758-4765. |
32. | Gundogdu G, Nguyen T, Hosseini Sharifi SH, et al. Evaluation of silk fibroin-based urinary conduits in a porcine model of urinary diversion. Front Bioeng Biotechnol, 2023, 11: 1100507. doi: 10.3389/fbioe.2023.1100507. |
33. | Shoae-Hassani A, Mortazavi-Tabatabaei SA, Sharif S, et al. Differentiation of human endometrial stem cells into urothelial cells on a three-dimensional nanofibrous silk-collagen scaffold: an autologous cell resource for reconstruction of the urinary bladder wall. J Tissue Eng Regen Med, 2015, 9(11): 1268-1276. |
34. | Xiao D, Yan H, Wang Q, et al. Trilayer three-dimensional hydrogel composite scaffold containing encapsulated adipose-derived stem cells promotes bladder reconstruction via SDF-1α/CXCR4 pathway. ACS Appl Mater Interfaces, 2017, 9(44): 38230-38241. |
35. | Zhao Y, He Y, Guo JH, et al. Time-dependent bladder tissue regeneration using bilayer bladder acellular matrix graft-silk fibroin scaffolds in a rat bladder augmentation model. Acta Biomater, 2015, 23: 91-102. |
36. | Bouhout S, Chabaud S, Bolduc S. Collagen hollow structure for bladder tissue engineering. Mater Sci Eng C Mater Biol Appl, 2019, 102: 228-237. |
37. | Leonhäuser D, Stollenwerk K, Seifarth V, et al. Two differentially structured collagen scaffolds for potential urinary bladder augmentation: proof of concept study in a Göttingen minipig model. J Transl Med, 2017, 15(1): 3. doi: 10.1186/s12967-016-1112-5. |
38. | Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater, 2011, 23(12): H41-H56. |
39. | Patrocinio D, Galván-Chacón V, Gómez-Blanco JC, et al. Biopolymers for tissue engineering: crosslinking, printing techniques, and applications. Gels, 2023, 9(11): 890. doi: 10.3390/gels9110890. |
40. | Pokrywczynska M, Jundzill A, Tworkiewicz J, et al. Urinary bladder augmentation with acellular biologic scaffold—A preclinical study in a large animal model. J Biomed Mater Res B Appl Biomater, 2022, 110(2): 438-449. |
41. | Zhang F, Liao L. Long-term follow-up of neurogenic bladder patients after bladder augmentation with small intestinal submucosa. World J Urol, 2020, 38(9): 2279-2288. |
42. | Zhao P, Li X, Fang Q, et al. Surface modification of small intestine submucosa in tissue engineering. Regenerative biomaterials, 2020, 7(4): 339-348. |
43. | Abdulghani S, Mitchell GR. Biomaterials for in situ tissue regeneration: A review. Biomolecules, 2019, 9(11): 750. doi: 10.3390/biom9110750. |
44. | Whitely M, Cereceres S, Dhavalikar P, et al. Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels. Biomaterials, 2018, 185: 194-204. |
45. | Cipitria A, Boettcher K, Schoenhals S, et al. In-situ tissue regeneration through SDF-1α driven cell recruitment and stiffness-mediated bone regeneration in a critical-sized segmental femoral defect. Acta Biomater, 2017, 60: 50-63. |
46. | Chen W, Shi C, Hou X, et al. Bladder acellular matrix conjugated with basic fibroblast growth factor for bladder regeneration. Tissue Eng Part A, 2014, 20(15-16): 2234-2242. |
47. | Zhang XZ, Jiang YL, Hu JG, et al. Procyanidins-crosslinked small intestine submucosa: A bladder patch promotes smooth muscle regeneration and bladder function restoration in a rabbit model. Bioact Mater, 2021, 6(6): 1827-1838. |
48. | Sharma S, Rajani S, Hui J, et al. Development of enzymatic-resistant and compliant decellularized extracellular matrixes via aliphatic chain modification for bladder tissue engineering. ACS Appl Mater Interfaces, 2022, 14(33): 37301-37315. |
49. | Chyzy A, Plonska-Brzezinska ME. Hydrogel properties and their impact on regenerative medicine and tissue engineering. Molecules, 2020, 25(24): 5795. doi: 10.3390/molecules25245795. |
50. | Bao Z, Xian C, Yuan Q, et al. Natural polymer-based hydrogels with enhanced mechanical performances: preparation, structure, and property. Adv Healthc Mater, 2019, 8(17): e1900670. doi: 10.1002/adhm.201900670. |
51. | Wu J, Pan Z, Zhao ZY, et al. Anti-swelling, robust, and adhesive extracellular matrix-mimicking hydrogel used as intraoral dressing. Adv Mater, 2022, 34(20): e2200115. doi: 10.1002/adma.202200115. |
52. | Tang Q, Lu B, He J, et al. Exosomes-loaded thermosensitive hydrogels for corneal epithelium and stroma regeneration. Biomaterials, 2022, 280: 121320. doi: 10.1016/j.biomaterials.2021.121320. |
53. | Qiu H, Li J, Huang Y, et al. Sulfhydryl functionalized hyaluronic acid hydrogels attenuate cyclophosphamide-induced bladder injury. Biomed Mater, 2022, 18(1). doi: 10.1088/1748-605X/acadc2. |
54. | Hanczar M, Moazen M, Day R. The significance of biomechanics and scaffold structure for bladder tissue engineering. Int J Mol Sci, 2021, 22(23): 12657. doi: 10.3390/ijms222312657. |
55. | Chen Z, Liu L, Chen Y, et al. Periostin attenuates cyclophosphamide-induced bladder injury by promoting urothelial stem cell proliferation and macrophage polarization. Stem Cells Transl Med, 2022, 11(6): 659-673. |
56. | Wang X, Zhang F, Liao L. Current applications and future directions of bioengineering approaches for bladder augmentation and reconstruction. Front Surg, 2021, 8: 664404. doi: 10.3389/fsurg.2021.664404. |
57. | Serrano-Aroca Á, Vera-Donoso CD, Moreno-Manzano V. Bioengineering approaches for bladder regeneration. Int J Mol Sci, 2018, 19(6): 1796. doi: 10.3390/ijms19061796. |
58. | Campbell GR, Turnbull G, Xiang L, et al. The peritoneal cavity as a bioreactor for tissue engineering visceral organs: bladder, uterus and vas deferens. J Tissue Eng Regen Med, 2008, 2(1): 50-60. |
59. | Zhang H, Wang Y, Zheng Z, et al. Strategies for improving the 3D printability of decellularized extracellular matrix bioink. Theranostics, 2023, 13(8): 2562-2587. |
60. | Kullmann FA, Clayton DR, Ruiz WG, et al. Urothelial proliferation and regeneration after spinal cord injury. Am J Physiol Renal Physiol, 2017, 313(1): F85-F102. |
61. | Patel AB, Osterberg EC, Satarasinghe PN, et al. Urethral injuries: Diagnostic and management strategies for critical care and trauma clinicians. J Clin Med, 2023, 12(4): 1495. doi: 10.3390/jcm12041495. |
62. | Gholami K, Seyedjafari E, Mahdavi FS, et al. The Effect of multilayered electrospun PLLA nanofibers coated with human amnion or bladder ECM proteins on epithelialization and smooth muscle regeneration in the rabbit bladder. Macromol Biosci, 2024, 24(3): e2300308. doi: 10.1002/mabi.202300308. |
63. | Horst M, Eberli D, Gobet R, et al. Tissue engineering in pediatric bladder reconstruction-the road to success. Front Pediatr, 2019, 7: 91. doi: 10.3389/fped.2019.00091. |
64. | Bae H, Puranik AS, Gauvin R, et al. Building vascular networks. Sci Transl Med, 2012, 4(160): 160ps23. doi: 10.1126/scitranslmed.3003688. |
65. | Xia P, Luo Y. Vascularization in tissue engineering: The architecture cues of pores in scaffolds. J Biomed Mater Res B Appl Biomater, 2022, 110(5): 1206-1214. |
66. | Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev, 2011, 63(4-5): 300-311. |
67. | Cohen R, Baruch ES, Cabilly I, et al. Modified ECM-based bioink for 3D printing of multi-scale vascular networks. Gels, 2023, 9(10): 792. doi: 10.3390/gels9100792. |
68. | Gomez-Amaya SM, Barbe MF, de Groat WC, et al. Neural reconstruction methods of restoring bladder function. Nat Rev Urol, 2015, 12(2): 100-118. |
69. | Adamowicz J, Pasternak I, Kloskowski T, et al. Development of a conductive biocomposite combining graphene and amniotic membrane for replacement of the neuronal network of tissue-engineered urinary bladder. Scientific reports, 2020, 10(1): 5824. doi: 10.1038/s41598-020-62197-3. |
70. | Bohne AW, Urwiller KL. Experience with urinary bladder regeneration. J Urol, 1957, 77(5): 725-732. |
71. | Tsuji I, Kuroda K, Fujieda J, et al. Clinical experiences of bladder reconstruction using preserved bladder and gelatin sponge bladder in the case of bladder cancer. J Urol, 1967, 98(1): 91-92. |
72. | Caione P, Boldrini R, Salerno A, et al. Bladder augmentation using acellular collagen biomatrix: a pilot experience in exstrophic patients. Pediatr Surg Int, 2012, 28(4): 421-428. |
73. | Schaefer M, Kaiser A, Stehr M, et al. Bladder augmentation with small intestinal submucosa leads to unsatisfactory long-term results. J Pediatr Urol, 2013, 9(6 Pt A): 878-883. |
- 1. Adamowicz J, Kowalczyk T, Drewa T. Tissue engineering of urinary bladder_current state of art and future perspectives. Cent European J Urol, 2013, 66(2): 202-206.
- 2. Nurse DE, Britton JP, Mundy AR. Relative indications for orthotopic lower urinary tract reconstruction, continent urinary diversion and conduit urinary diversion. Br J Urol, 1993, 71(5): 562-565.
- 3. Liu X, Wang J, Ren L, et al. Bladder replacement therapy. Bladder (San Franc), 2023, 10: e21200010. doi: 10.14440/bladder.2023.869.
- 4. Arabzadeh Bahri R, Peisepar M, Maleki S, et al. Current evidence regarding alternative techniques for enterocystoplasty using regenerative medicine methods: a systematic review. Eur J Med Res, 2024, 29(1): 163. doi: 10.1186/s40001-024-01757-z.
- 5. 张秀珍, 陈秋竹, 张艺琪. 膀胱组织工程研究进展. 生物医学工程学杂志, 2020, 37(2): 200-206.
- 6. Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng, 2011, 2: 403-430.
- 7. Garriboli M, Deguchi K, Totonelli G, et al. Development of a porcine acellular bladder matrix for tissue-engineered bladder reconstruction. Pediatr Surg Int, 2022, 38(5): 665-677.
- 8. Casarin M, Fortunato TM, Imran S, et al. Porcine small intestinal submucosa (SIS) as a suitable scaffold for the creation of a tissue-engineered urinary conduit: decellularization, biomechanical and biocompatibility characterization using new approaches. Int J Mol Sci, 2022, 23(5): 2826. doi: 10.3390/ijms23052826.
- 9. Lin HK, Godiwalla SY, Palmer B, et al. Understanding roles of porcine small intestinal submucosa in urinary bladder regeneration: identification of variable regenerative characteristics of small intestinal submucosa. Tissue Eng Part B Rev, 2014, 20(1): 73-83.
- 10. Desai N, Rana D, Salave S, et al. Chitosan: A potential biopolymer in drug delivery and biomedical applications. Pharmaceutics, 2023, 15(4): 1313. doi: 10.3390/pharmaceutics15041313.
- 11. Ławkowska K, Rosenbaum C, Petrasz P, et al. Tissue engineering in reconstructive urology-The current status and critical insights to set future directions-critical review. Front Bioeng Biotechnol, 2023, 10: 1040987. doi: 10.3389/fbioe.2022.1040987.
- 12. Tu DD, Chung YG, Gil ES, et al. Bladder tissue regeneration using acellular bi-layer silk scaffolds in a large animal model of augmentation cystoplasty. Biomaterials, 2013, 34(34): 8681-8689.
- 13. Sack BS, Mauney JR, Estrada CR. Silk fibroin scaffolds for urologic tissue engineering. Curr Urol Rep, 2016, 17(2): 16. doi: 10.1007/s11934-015-0567-x.
- 14. Syed O, Walters NJ, Day RM, et al. Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomater, 2014, 10(12): 5043-5054.
- 15. Zhao Y, Peng H, Sun L, et al. The application of small intestinal submucosa in tissue regeneration. Mater Today Bio, 2024, 26: 101032. doi: 10.1016/j.mtbio.2024.101032.
- 16. 朱黄凯, 赵基源. 小肠黏膜下层用于软组织修复的研究进展. 生物医学工程学杂志, 2016, 33(4): 816-820.
- 17. Voytik-Harbin SL, Brightman AO, Kraine MR, et al. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem, 1997, 67(4): 478-491.
- 18. Campodonico F, Benelli R, Michelazzi A, et al. Bladder cell culture on small intestinal submucosa as bioscaffold: experimental study on engineered urothelial grafts. Eur Urol, 2004, 46(4): 531-537.
- 19. Pariente JL, Kim BS, Atala A. In vitro biocompatibility assessment of naturally derived and synthetic biomaterials using normal human urothelial cells. J Biomed Mater Res, 2001, 55(1): 33-39.
- 20. Song YT, Li YQ, Tian MX, et al. Application of antibody-conjugated small intestine submucosa to capture urine-derived stem cells for bladder repair in a rabbit model. Bioact Mater, 2022, 14: 443-455.
- 21. Jiwangga D, Mahyudin F, Mastutik G, et al. Current strategies for tracheal decellularization: a systematic review. Int J Biomater, 2024, 2024: 3355239. doi: 10.1155/2024/3355239.
- 22. Sutherland RS, Baskin LS, Hayward SW, et al. Regeneration of bladder urothelium, smooth muscle, blood vessels and nerves into an acellular tissue matrix. J Urol, 1996, 156(2 Pt 2): 571-577.
- 23. Kropp BP, Badylak S, Thor KB. Regenerative bladder augmentation: a review of the initial preclinical studies with porcine small intestinal submucosa. Adv Exp Med Biol, 1995, 385: 229-235.
- 24. Song L, Murphy SV, Yang B, et al. Bladder acellular matrix and its application in bladder augmentation. Tissue Eng Part B Rev, 2014, 20(2): 163-172.
- 25. Farhat WA, Chen J, Haig J, et al. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties. Biomed Mater, 2008, 3(2): 025015. doi: 10.1088/1748-6041/3/2/025015.
- 26. Ajalloueian F, Lemon G, Hilborn J, et al. Bladder biomechanics and the use of scaffolds for regenerative medicine in the urinary bladder. Nat Rev Urol, 2018, 15(3): 155-174.
- 27. Chun SY, Lim GJ, Kwon TG, et al. Identification and characterization of bioactive factors in bladder submucosa matrix. Biomaterials, 2007, 28(29): 4251-4256.
- 28. Yoo JJ, Meng J, Oberpenning F, et al. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology, 1998, 51(2): 221-225.
- 29. Obara T, Matsuura S, Narita S, et al. Bladder acellular matrix grafting regenerates urinary bladder in the spinal cord injury rat. Urology, 2006, 68(4): 892-897.
- 30. Urakami S, Shiina H, Enokida H, et al. Functional improvement in spinal cord injury-induced neurogenic bladder by bladder augmentation using bladder acellular matrix graft in the rat. World J Urol, 2007, 25(2): 207-213.
- 31. Seth A, Chung YG, Gil ES, et al. The performance of silk scaffolds in a rat model of augmentation cystoplasty. Biomaterials, 2013, 34(20): 4758-4765.
- 32. Gundogdu G, Nguyen T, Hosseini Sharifi SH, et al. Evaluation of silk fibroin-based urinary conduits in a porcine model of urinary diversion. Front Bioeng Biotechnol, 2023, 11: 1100507. doi: 10.3389/fbioe.2023.1100507.
- 33. Shoae-Hassani A, Mortazavi-Tabatabaei SA, Sharif S, et al. Differentiation of human endometrial stem cells into urothelial cells on a three-dimensional nanofibrous silk-collagen scaffold: an autologous cell resource for reconstruction of the urinary bladder wall. J Tissue Eng Regen Med, 2015, 9(11): 1268-1276.
- 34. Xiao D, Yan H, Wang Q, et al. Trilayer three-dimensional hydrogel composite scaffold containing encapsulated adipose-derived stem cells promotes bladder reconstruction via SDF-1α/CXCR4 pathway. ACS Appl Mater Interfaces, 2017, 9(44): 38230-38241.
- 35. Zhao Y, He Y, Guo JH, et al. Time-dependent bladder tissue regeneration using bilayer bladder acellular matrix graft-silk fibroin scaffolds in a rat bladder augmentation model. Acta Biomater, 2015, 23: 91-102.
- 36. Bouhout S, Chabaud S, Bolduc S. Collagen hollow structure for bladder tissue engineering. Mater Sci Eng C Mater Biol Appl, 2019, 102: 228-237.
- 37. Leonhäuser D, Stollenwerk K, Seifarth V, et al. Two differentially structured collagen scaffolds for potential urinary bladder augmentation: proof of concept study in a Göttingen minipig model. J Transl Med, 2017, 15(1): 3. doi: 10.1186/s12967-016-1112-5.
- 38. Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater, 2011, 23(12): H41-H56.
- 39. Patrocinio D, Galván-Chacón V, Gómez-Blanco JC, et al. Biopolymers for tissue engineering: crosslinking, printing techniques, and applications. Gels, 2023, 9(11): 890. doi: 10.3390/gels9110890.
- 40. Pokrywczynska M, Jundzill A, Tworkiewicz J, et al. Urinary bladder augmentation with acellular biologic scaffold—A preclinical study in a large animal model. J Biomed Mater Res B Appl Biomater, 2022, 110(2): 438-449.
- 41. Zhang F, Liao L. Long-term follow-up of neurogenic bladder patients after bladder augmentation with small intestinal submucosa. World J Urol, 2020, 38(9): 2279-2288.
- 42. Zhao P, Li X, Fang Q, et al. Surface modification of small intestine submucosa in tissue engineering. Regenerative biomaterials, 2020, 7(4): 339-348.
- 43. Abdulghani S, Mitchell GR. Biomaterials for in situ tissue regeneration: A review. Biomolecules, 2019, 9(11): 750. doi: 10.3390/biom9110750.
- 44. Whitely M, Cereceres S, Dhavalikar P, et al. Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels. Biomaterials, 2018, 185: 194-204.
- 45. Cipitria A, Boettcher K, Schoenhals S, et al. In-situ tissue regeneration through SDF-1α driven cell recruitment and stiffness-mediated bone regeneration in a critical-sized segmental femoral defect. Acta Biomater, 2017, 60: 50-63.
- 46. Chen W, Shi C, Hou X, et al. Bladder acellular matrix conjugated with basic fibroblast growth factor for bladder regeneration. Tissue Eng Part A, 2014, 20(15-16): 2234-2242.
- 47. Zhang XZ, Jiang YL, Hu JG, et al. Procyanidins-crosslinked small intestine submucosa: A bladder patch promotes smooth muscle regeneration and bladder function restoration in a rabbit model. Bioact Mater, 2021, 6(6): 1827-1838.
- 48. Sharma S, Rajani S, Hui J, et al. Development of enzymatic-resistant and compliant decellularized extracellular matrixes via aliphatic chain modification for bladder tissue engineering. ACS Appl Mater Interfaces, 2022, 14(33): 37301-37315.
- 49. Chyzy A, Plonska-Brzezinska ME. Hydrogel properties and their impact on regenerative medicine and tissue engineering. Molecules, 2020, 25(24): 5795. doi: 10.3390/molecules25245795.
- 50. Bao Z, Xian C, Yuan Q, et al. Natural polymer-based hydrogels with enhanced mechanical performances: preparation, structure, and property. Adv Healthc Mater, 2019, 8(17): e1900670. doi: 10.1002/adhm.201900670.
- 51. Wu J, Pan Z, Zhao ZY, et al. Anti-swelling, robust, and adhesive extracellular matrix-mimicking hydrogel used as intraoral dressing. Adv Mater, 2022, 34(20): e2200115. doi: 10.1002/adma.202200115.
- 52. Tang Q, Lu B, He J, et al. Exosomes-loaded thermosensitive hydrogels for corneal epithelium and stroma regeneration. Biomaterials, 2022, 280: 121320. doi: 10.1016/j.biomaterials.2021.121320.
- 53. Qiu H, Li J, Huang Y, et al. Sulfhydryl functionalized hyaluronic acid hydrogels attenuate cyclophosphamide-induced bladder injury. Biomed Mater, 2022, 18(1). doi: 10.1088/1748-605X/acadc2.
- 54. Hanczar M, Moazen M, Day R. The significance of biomechanics and scaffold structure for bladder tissue engineering. Int J Mol Sci, 2021, 22(23): 12657. doi: 10.3390/ijms222312657.
- 55. Chen Z, Liu L, Chen Y, et al. Periostin attenuates cyclophosphamide-induced bladder injury by promoting urothelial stem cell proliferation and macrophage polarization. Stem Cells Transl Med, 2022, 11(6): 659-673.
- 56. Wang X, Zhang F, Liao L. Current applications and future directions of bioengineering approaches for bladder augmentation and reconstruction. Front Surg, 2021, 8: 664404. doi: 10.3389/fsurg.2021.664404.
- 57. Serrano-Aroca Á, Vera-Donoso CD, Moreno-Manzano V. Bioengineering approaches for bladder regeneration. Int J Mol Sci, 2018, 19(6): 1796. doi: 10.3390/ijms19061796.
- 58. Campbell GR, Turnbull G, Xiang L, et al. The peritoneal cavity as a bioreactor for tissue engineering visceral organs: bladder, uterus and vas deferens. J Tissue Eng Regen Med, 2008, 2(1): 50-60.
- 59. Zhang H, Wang Y, Zheng Z, et al. Strategies for improving the 3D printability of decellularized extracellular matrix bioink. Theranostics, 2023, 13(8): 2562-2587.
- 60. Kullmann FA, Clayton DR, Ruiz WG, et al. Urothelial proliferation and regeneration after spinal cord injury. Am J Physiol Renal Physiol, 2017, 313(1): F85-F102.
- 61. Patel AB, Osterberg EC, Satarasinghe PN, et al. Urethral injuries: Diagnostic and management strategies for critical care and trauma clinicians. J Clin Med, 2023, 12(4): 1495. doi: 10.3390/jcm12041495.
- 62. Gholami K, Seyedjafari E, Mahdavi FS, et al. The Effect of multilayered electrospun PLLA nanofibers coated with human amnion or bladder ECM proteins on epithelialization and smooth muscle regeneration in the rabbit bladder. Macromol Biosci, 2024, 24(3): e2300308. doi: 10.1002/mabi.202300308.
- 63. Horst M, Eberli D, Gobet R, et al. Tissue engineering in pediatric bladder reconstruction-the road to success. Front Pediatr, 2019, 7: 91. doi: 10.3389/fped.2019.00091.
- 64. Bae H, Puranik AS, Gauvin R, et al. Building vascular networks. Sci Transl Med, 2012, 4(160): 160ps23. doi: 10.1126/scitranslmed.3003688.
- 65. Xia P, Luo Y. Vascularization in tissue engineering: The architecture cues of pores in scaffolds. J Biomed Mater Res B Appl Biomater, 2022, 110(5): 1206-1214.
- 66. Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev, 2011, 63(4-5): 300-311.
- 67. Cohen R, Baruch ES, Cabilly I, et al. Modified ECM-based bioink for 3D printing of multi-scale vascular networks. Gels, 2023, 9(10): 792. doi: 10.3390/gels9100792.
- 68. Gomez-Amaya SM, Barbe MF, de Groat WC, et al. Neural reconstruction methods of restoring bladder function. Nat Rev Urol, 2015, 12(2): 100-118.
- 69. Adamowicz J, Pasternak I, Kloskowski T, et al. Development of a conductive biocomposite combining graphene and amniotic membrane for replacement of the neuronal network of tissue-engineered urinary bladder. Scientific reports, 2020, 10(1): 5824. doi: 10.1038/s41598-020-62197-3.
- 70. Bohne AW, Urwiller KL. Experience with urinary bladder regeneration. J Urol, 1957, 77(5): 725-732.
- 71. Tsuji I, Kuroda K, Fujieda J, et al. Clinical experiences of bladder reconstruction using preserved bladder and gelatin sponge bladder in the case of bladder cancer. J Urol, 1967, 98(1): 91-92.
- 72. Caione P, Boldrini R, Salerno A, et al. Bladder augmentation using acellular collagen biomatrix: a pilot experience in exstrophic patients. Pediatr Surg Int, 2012, 28(4): 421-428.
- 73. Schaefer M, Kaiser A, Stehr M, et al. Bladder augmentation with small intestinal submucosa leads to unsatisfactory long-term results. J Pediatr Urol, 2013, 9(6 Pt A): 878-883.