1. |
Lee CH, Hsu CC, Huang PY. Biomechanical study of different fixation techniques for the treatment of sacroiliac joint injuries using finite element analyses and biomechanical tests. Comput Biol Med, 2017, 87: 250-257.
|
2. |
Kaiser SP, Gardner MJ, Liu J, et al. Anatomic determinants of sacral dysmorphism and implications for safe iliosacral screw placement. J Bone Joint Surg (Am), 2014, 96(14): e120. doi: 10.2106/JBJS.M.00895.
|
3. |
Chon CS, Jeong JH, Kang B, et al. Computational simulation study on ilio-sacral screw fixations for pelvic ring injuries and implications in Asian sacrum. Eur J Orthop Surg Traumatol, 2018, 28(3): 439-444.
|
4. |
Yang Z, Sheng B, Liu D, et al. Intraoperative CT-assisted sacroiliac screws fixation for the treatment of posterior pelvic ring injury: a comparative study with conventional intraoperative imaging. Sci Rep, 2022, 12(1): 17767. doi: 10.1038/s41598-022-22706-y.
|
5. |
Weil YA, Khoury A, Mosheiff R, et al. Robotic assisted fixation of sacral fractures: A pilot study. OTA Int, 2019, 2(4): e046. doi: 10.1097/OI9.0000000000000046.
|
6. |
阳宏奇, 雷青, 蔡立宏, 等. 3D 打印导板辅助空心螺钉内固定治疗不稳定性骨盆骨折. 中国修复重建外科杂志, 2018, 32(2): 145-151.
|
7. |
Yang F, Yao S, Chen KF, et al. A novel patient-specific three-dimensional-printed external template to guide iliosacral screw insertion: a retrospective study. BMC Musculoskelet Disord, 2018, 19(1): 397. doi: 10.1186/s12891-018-2320-3.
|
8. |
Yang Z, Sheng B, Liu D, et al. Sacroiliac screws fixation navigated with three-dimensional printing personalized guide template for the treatment of posterior pelvic ring injury: A case report. Front Surg, 2023, 9: 1025650. doi: 10.3389/fsurg.2022.1025650.
|
9. |
刘峰, 雷青, 蔡立宏, 等. 改良经皮三维打印导板与传统透视辅助骶髂螺钉固定骨盆后环骨折的疗效比较. 中南大学学报 (医学版), 2023, 48(11): 1703-1710.
|
10. |
陶星光, 周凯华. 基于外固定支架的3D打印导板在骨盆骨折中的应用. 中华创伤骨科杂志, 2018, 20(3): 235-241.
|
11. |
盛斌. 辅助骶髂螺钉置入的3D打印蜂窝头导板: 2023: 20690759[P]. 2023-10-26.
|
12. |
Wu T, Ren X, Cui Y, et al. Biomechanical study of three kinds of internal fixation for the treatment of sacroiliac joint disruption using biomechanical test and finite element analysis. J Orthop Surg Res, 2018, 13(1): 152. doi: 10.1186/s13018-018-0858-2.
|
13. |
Takao M, Hamada H, Sakai T, et al. Clinical application of navigation in the surgical treatment of a pelvic ring injury and acetabular fracture. Adv Exp Med Biol, 2018, 1093: 289-305.
|
14. |
Wang J, Zhang T, Han W, et al. Robot-assisted S2 screw fixation for posterior pelvic ring injury. Injury, 2023, 54 Suppl 2: S3-S7.
|
15. |
Deveci MZY, Lewis DD, Lederer XJ. Evaluation of a 3-D printed drill guide to facilitate fluoroscopic-assisted Kirschner wire placement for minimally invasive iliosacral screw placement in dog cadavers. Am J Vet Res, 2023, 84(9): ajvr. 23.04. 0084. doi: 10.2460/ajvr.23.04.0084.
|
16. |
马驰, 朴成哲. 3D打印个体化截骨导板辅助开放楔形胫骨高位截骨术的应用现状. 中国修复重建外科杂志, 2023, 37(3): 360-364.
|
17. |
Wu C, Deng J, Pan J, et al. Anatomical conditions and patient-specific locked navigation templates for transverse sacroiliac screw placement: a retrospective study. J Orthop Surg Res, 2020, 15(1): 260. doi: 10.1186/s13018-020-01752-0.
|
18. |
Kim JW, Quispe JC, Hao J, et al. Fluoroscopic views for a more accurate placement of iliosacral screws: An experimental study. J Orthop Trauma, 2016, 30(1): 34-40.
|
19. |
Ozmeric A, Yucens M, Gultaç E, et al. Are two different projections of the inlet view necessary for the percutaneous placement of iliosacral screws? Bone Joint J, 2015, 97-B(5): 705-710.
|
20. |
Takeba J, Umakoshi K, Kikuchi S, et al. Accuracy of screw fixation using the O-arm® and StealthStation® navigation system for unstable pelvic ring fractures. Eur J Orthop Surg Traumatol, 2018, 28(3): 431-438.
|
21. |
You MR, Fan ZQ, Ye HM, et al. The design and application of an individualized 3D printing assisted guide plates in assisting sacroiliac screws insertion. Comput Assist Surg (Abingdon), 2022, 27(1): 113-119.
|
22. |
McCarthy DA, Granger LA, Aulakh KS, et al. Accuracy of a drilling with a custom 3D printed guide or free-hand technique in canine experimental sacroiliac luxations. Vet Surg, 2022, 51(1): 182-190.
|
23. |
Yazigi C, Chaar MS, Busch R, et al. The effect of sterilization on the accuracy and fit of 3D-printed surgical guides. Materials (Basel), 2023, 16(15): 5305. doi: 10.3390/ma16155305.
|
24. |
Wu C, Shen D, Deng J, et al. Navigation template design and the anatomic measurement for anterograde transpubic screws. Orthop Surg, 2022, 14(12): 3408-3416.
|
25. |
Nguyen P, Stanislaus I, McGahon C, et al. Quality assurance in 3D-printing: A dimensional accuracy study of patient-specific 3D-printed vascular anatomical models. Front Med Technol, 2023, 5: 1097850. doi: 10.3389/fmedt.2023.1097850.
|
26. |
Jennison T, McNally M, Pandit H. Prevention of infection in external fixator pin sites. Acta Biomater, 2014, 10(2): 595-603.
|
27. |
Kazmers NH, Fragomen AT, Rozbruch SR. Prevention of pin site infection in external fixation: a review of the literature. Strategies Trauma Limb Reconstr, 2016, 11(2): 75-85.
|
28. |
Cavusoglu AT, Er MS, Inal S, et al. Pin site care during circular external fixation using two different protocols. J Orthop Trauma, 2009, 23(10): 724-730.
|
29. |
Jones-Walton P. Clinical standards in skeletal traction pin site care. Orthop Nurs, 1991, 10(2): 12-16.
|