1. |
Serfaty A. Hip arthroplasty: current concepts and potential complications. Radiologia Brasileira, 2020, 53(1): Ⅶ. doi: 10.1590/0100-3984.2020.53.1e2.
|
2. |
Vijayaraghavan R, Loganathan S, Valapa RB. 3D bioprinted photo crosslinkable GelMA/methylcellulose hydrogel mimicking native corneal model with enhanced in vitro cytocompatibility and sustained keratocyte phenotype for stromal regeneration. Int J Biol Macromol, 2024, 264(Pt 1): 130472. doi: 10.1016/j.ijbiomac.2024.130472.
|
3. |
Darbandi KR, Amin BK. Innovation and evaluations of 3D printing resins modified with zirconia nanoparticles and silver nanoparticle-immobilized halloysite nanotubes for dental restoration. Coatings, 2024, 14(3): 310. doi: 10.3390/coatings14030310.
|
4. |
Tian H, Gao S, Yu J, et al. Application of digital modeling and three-dimensional printing of titanium mesh for reconstruction of thyroid cartilage in partial laryngectomy. Acta Otolaryngol, 2022, 142(3-4): 363-368.
|
5. |
Hu X, Chen Y, Cai W, et al. Computer-aided design and 3D printing of hemipelvic endoprosthesis for personalized limb-salvage reconstruction after periacetabular tumor resection. Bioengineering (Basel), 2022, 9(8): 400. doi: 10.3390/bioengineering9080400.
|
6. |
Chiu KY, Huang JY, Su YH, et al. A 3D-printed bioactive glass scaffold coated with sustained-release PLGA/simvastatin stimulates calvarial bone repair. Materials & Design, 2024, 241: 112898. doi: 10.1016/j.matdes.2024.112898.
|
7. |
Zhu D, Wang L, Fu J, et al. Comparison of customized 3D-printed prosthesis and screw-rod-cage system reconstruction following resection of periacetabular tumors. Front Oncol, 2022, 12: 953266. doi: 10.3389/fonc.2022.953266.
|
8. |
Dall’Ava L, Hothi H, Henckel J, et al. Osseointegration of retrieved 3D-printed, off-the-shelf acetabular implants. Bone Joint Res, 2021, 10(7): 388-400.
|
9. |
Sun Y, Hu W, Wu C, et al. Research progress on mechanical properties of 3D printed biomedical titanium alloys. Mater Sci Eng C Mater Biol Appl, 2023, 32(21): 9489-9503.
|
10. |
He S, Zhu J, Jing Y, et al. Effect of 3D-printed porous titanium alloy pore structure on bone regeneration: a review. Coatings, 2024, 14(3): 253. doi: 10.3390/coatings14030253.
|
11. |
Zhang X, Guan S, Qiu J, et al. Atomic layer deposition of tantalum oxide films on 3D-printed Ti6Al4V scaffolds with enhanced osteogenic property for orthopedic implants. ACS Biomater Sci Eng, 2023, 9(7): 4197-4207.
|
12. |
Chen YT, Hsiao HY, Wang CY, et al. Improving bioactivity in 3D-printed Ti-6Al-4V alloy scaffold via CaO-MgO-SiO2 glass-ceramic coating. J Alloys Compd, 2024, 976: 173387. doi: 10.1016/j.jallcom.2023.173387.
|
13. |
Klasan A, Bayan A, Holdaway I, et al. Liner type has no impact on bone mineral density changes around a 3D printed trabecular titanium acetabular component. Orthop Traumatol Surg Res, 2023, 109(1): 103136. doi: 10.1016/j.otsr.2021.103136.
|
14. |
Sheng X, Liu H, Xu Y, et al. Functionalized biomimetic mineralized collagen promotes osseointegration of 3D-printed titanium alloy microporous interface. Mater Today Bio, 2023, 24: 100896. doi: 10.1016/j.mtbio.2023.100896.
|
15. |
Li X, Zhu L, Che Z, et al. Progress of research on the surface functionalization of tantalum and porous tantalum in bone tissue engineering. Biomed Mater, 2024, 19(4). doi: 10.1088/1748-605X/ad5481.
|
16. |
Wang P, Mao S, Jiao Y, et al. Novel nano-thin amorphous Ta-coating on 3D-printed porous TC4 implant: Microstructure and enhanced biological effects. Materials & Design, 2024: 112986. https://doi.org/10.1016/j.matdes.2024.112986.
|
17. |
García-Robledo H, García-Fernández L, Parra J, et al. Ti/Ta-based composite polysaccharide scaffolds for guided bone regeneration in total hip arthroplasty. Int J Biol Macromol, 2024, 271(Pt 1): 132573. doi: 10.1016/j.ijbiomac.2024.132573.
|
18. |
Maimaiti B, Zhang N, Yan L, et al. Stable ZnO-doped hydroxyapatite nanocoating for anti-infection and osteogenic on titanium. Colloids Surf B Biointerfaces, 2020, 186: 110731. doi: 10.1016/j.colsurfb.2019.110731.
|
19. |
Li Z, Jin L, Yang X, et al. A multifunctional ionic liquid coating on 3D-Printed prostheses: Combating infection, promoting osseointegration. Mater Today Bio, 2024, 26: 101076. doi: 10.1016/j.mtbio.2024.101076.
|
20. |
Wu Y, Shi X, Wang J, et al. A surface metal ion-modified 3D-printed Ti-6Al-4V implant with direct and immunoregulatory antibacterial and osteogenic activity. Front Bioeng Biotechnol, 2023, 11: 1142264. doi: 10.3389/fbioe.2023.1142264.
|
21. |
Karaji ZG, Jahanmard F, Mirzaei AH, et al. A multifunctional silk coating on additively manufactured porous titanium to prevent implant-associated infection and stimulate bone regeneration. Biomed Mater, 2020, 15(6): 065016. doi: 10.1088/1748-605X/aba40b.
|
22. |
Ma Y, Yan J, Yan T, et al. Biological properties of Cu-bearing and Ag-bearing titanium-based alloys and their surface modifications: A review of antibacterial aspect. Frontiers in Materials, 2022, 9: 999794. doi: 10.3389/fmats.2022.999794.
|
23. |
Wang H, Zheng TX, Yang NY, et al. Osteogenic and long-term antibacterial properties of Sr/Ag-containing TiO2 microporous coating in vitro and in vivo. J Mater Chem B, 2023, 11(13): 2972-2988.
|
24. |
Jiao Y, Li X, Zhang X, et al. Silver antibacterial surface adjusted by hierarchical structure on 3D printed porous titanium alloy. Applied Surface Science, 2023, 610: 155519. doi: 10.1016/j.apsusc.2022.155519.
|
25. |
Reinhard J, Urban P, Bell S, et al. Automatic data-driven design and 3D printing of custom ocular prostheses. Nat Commun, 2024, 15(1): 1360. doi: 10.1038/s41467-024-45345-5.
|
26. |
Sun X, Tong S, Yang S, et al. The effects of graphene on the biocompatibility of a 3D-printed porous Titanium alloy. Coatings, 2021, 11(12): 1509. doi: 10.3390/coatings11121509.
|
27. |
Fan H, Deng S, Tang W, et al. Highly porous 3D printed tantalum scaffolds have better biomechanical and microstructural properties than titanium scaffolds. BioMed Res Int, 2021, 2021: 2899043. doi: 10.1155/2021/2899043.
|
28. |
Paz-González JA, Velasco-Santos C, Villarreal-Gómez LJ, et al. Structural composite based on 3D printing polylactic acid/carbon fiber laminates (PLA/CFRC) as an alternative material for femoral stem prosthesis. J Mech Behav Biomed, 2023, 138: 105632. doi: 10.1016/j.jmbbm.2022.105632.
|
29. |
Zhang C, Chen H, Fan H, et al. Radial head replacement using personalized 3D printed porous tantalum prosthesis. J Mater Res Technol, 2022, 20: 3705-3713.
|
30. |
Hao Y, Wang L, Jiang W, et al. 3D printing hip prostheses offer accurate reconstruction, stable fixation, and functional recovery for revision total hip arthroplasty with complex acetabular bone defect. Engineering, 2020, 6(11): 1285-1290.
|
31. |
Wan L, Wu G, Cao P, et al. Curative effect and prognosis of 3D printing titanium alloy trabecular cup and pad in revision of acetabular defect of hip joint. Exp Ther Med, 2019, 18(1): 659-663.
|
32. |
Berlinberg EJ, Kavian JA, Roof MA, et al. Minimum 2-year outcomes of a novel 3d-printed fully porous titanium acetabular shell in revision total hip arthroplasty. Arthroplast Today, 2022, 18: 39-44.
|
33. |
王跃辉, 邹士平, 陈宾, 等. 多孔钽金属Jumbo杯在髋关节翻修术中的应用. 中国骨伤, 2022, 35(1): 20-25.
|
34. |
马立峰, 吴杰, 郭艾, 等. 3D打印钛金属加强块和Jumbo臼杯重建髋臼骨缺损早期临床疗效的对比研究. 中华骨与关节外科杂志, 2020, 13(6): 467-471.
|
35. |
Fu J, Ni M, Zhu F, et al. Reconstruction of Paprosky type Ⅲ acetabular defects by three-dimensional printed porous augment: techniques and clinical outcomes of 18 consecutive cases. Orthop Surg, 2022, 14(5): 1004-1010.
|
36. |
Kong K, Zhao C, Chang Y, et al. Use of customized 3D-printed titanium augment with tantalum trabecular cup for large acetabular bone defects in revision total hip arthroplasty: A midterm follow-up study. Front Bioeng Biotechnol, 2022, 10: 900905. doi: 10.3389/fbioe.2022.900905.
|
37. |
Ying J, Cheng L, Li J, et al. Treatment of acetabular bone defect in revision of total hip arthroplasty using 3D printed tantalum acetabular augment. Orthopaedic Surgery, 2023, 15(5): 1264-1271.
|
38. |
Arvinte D, Kiran M, Sood M. Cup-cage construct for massive acetabular defect in revision hip arthroplasty—A case series with medium to long-term follow-up. J Clin Orthop Trauma, 2020, 11(1): 62-66.
|
39. |
Garceau SP, Warschawski Y, Joly D, et al. Hip arthroplasty with the use of a reconstruction cage and porous metal augment to treat massive acetabular bone loss: a midterm follow-up. J Arthroplasty, 2022, 37(7): S636-S641.
|
40. |
Zhang X, Li Z, Wang W, et al. Mid-term results of revision surgery using double-trabecular metal cups alone or combined with impaction bone grafting for complex acetabular defects. J Orthop Surg Res, 2020, 15(1): 301. doi: 10.1186/s13018-020-01828-x.
|
41. |
Alqwbani M, Wang Z, Wang Q, et al. Porous tantalum shell and augment for acetabular defect reconstruction in revision total hip arthroplasty: a mid-term follow-up study. Int Orthop, 2022, 46(7): 1515-1520.
|
42. |
Di Laura A, Henckel J, Hart A. Custom 3D-printed implants for acetabular reconstruction: intermediate-term functional and radiographic results. JBJS Open Access, 2023, 8(2): e22.00120. doi: 10.2106/JBJS.OA.22.00120.
|
43. |
Gruber MS, Jesenko M, Burghuber J, et al. Functional and radiological outcomes after treatment with custom-made acetabular components in patients with Paprosky type 3 acetabular defects: short-term results. BMC Musculoskelet Disord, 2020, 21(1): 835. doi: 10.1186/s12891-020-03851-9.
|
44. |
Xiao Q, Xu B, Zhou K, et al. Long-term results of combined porous tantalum augments and titanium-coated cups for Paprosky type Ⅲ bone defects in acetabular revision. Int Orthop, 2021, 45(7): 1699-1706.
|
45. |
Hao L, Zhang Y, Bian W, et al. Standardized 3D-printed trabecular titanium augment and cup for acetabular bone defects in revision hip arthroplasty: a mid-term follow-up study. J Orthop Surg Res, 2023, 18(1): 521. doi: 10.1186/s13018-023-03986-0.
|
46. |
Hube R, Zimmerer A, Nonnenmacher L, et al. Reconstruction of Paprosky 3B acetabular defects with porous tantalum shells and augments in revision total hip arthroplasty using the footing technique. Orthopaedic Proceedings, 2023, 105(Supp_12): 2. doi: 10.1302/1358-992X.2023.12.002.
|
47. |
Romagnoli M, Zaffagnini M, Carillo E, et al. Custom-made implants for massive acetabular bone loss: accuracy with CT assessment. J Orthop Surg Res, 2023, 18(1): 742. doi: 10.1186/s13018-023-04230-5.
|
48. |
Scharff-Baauw M, Van Hooff ML, Van Hellemondt GG, et al. Good results at 2-year follow-up of a custom-made triflange acetabular component for large acetabular defects and pelvic discontinuity: a prospective case series of 50 hips. Acta Orthop, 2021, 92(3): 297-303.
|