1. |
Gregson CL, Compston JE. New national osteoporosis guidance-implications for geriatricians. Age Ageing, 2022, 51(4): afac044. doi: 10.1093/ageing/afac044.
|
2. |
Hoang DM, Pham PT, Bach TQ, et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther, 2022, 7(1): 272. doi: 10.1038/s41392-022-01134-4.
|
3. |
Ponzetti M, Rucci N. Osteoblast differentiation and signaling: Established concepts and emerging topics. Int J Mol Sci, 2021, 22(13): 6651. doi: 10.3390/ijms22136651.
|
4. |
Serowoky MA, Arata CE, Crump JG, et al. Skeletal stem cells: insights into maintaining and regenerating the skeleton. Development, 2020, 147(5): dev179325. doi: 10.1242/dev.179325.
|
5. |
Lee H, Seidl C, Sun R, et al. R-spondins are BMP receptor antagonists in xenopus early embryonic development. Nat Commun, 2020, 11(1): 5570. doi: 10.1038/s41467-020-19373-w.
|
6. |
He Z, Zhang J, Ma J, et al. R-spondin family biology and emerging linkages to cancer. Ann Med, 2023, 55(1): 428-446.
|
7. |
Fischer AS, Müllerke S, Arnold A, et al. R-spondin/YAP axis promotes gastric oxyntic gland regeneration and Helicobacter pylori-associated metaplasia in mice. J Clin Invest, 2022, 132(21): e151363. doi: 10.1172/JCI151363.
|
8. |
Martínez-Gil N, Ugartondo N, Grinberg D, et al. Wnt pathway extracellular components and their essential roles in bone homeostasis. Genes (Basel), 2022, 13(1): 138. doi: 10.3390/genes13010138.
|
9. |
Raslan AA, Oh YJ, Jin YR, et al. R-Spondin2, a positive canonical WNT signaling regulator, controls the expansion and differentiation of distal lung epithelial stem/progenitor cells in mice. Int J Mol Sci, 2022, 23(6): 3089. doi: 10.3390/ijms23063089.
|
10. |
Luo P, Yuan QL, Yang M, et al. The role of cells and signal pathways in subchondral bone in osteoarthritis. Bone Joint Res, 2023, 12(9): 536-545.
|
11. |
Guo D, Pan H, Lu X, et al. Rspo2 exacerbates rheumatoid arthritis by targeting aggressive phenotype of fibroblast-like synoviocytes and disrupting chondrocyte homeostasis via Wnt/β-catenin pathway. Arthritis Res Ther, 2023, 25(1): 217. doi: 10.1186/s13075-023-03198-1.
|
12. |
Walker MD, Shane E. Postmenopausal osteoporosis. N Engl J Med, 2023, 389(21): 1979-1991.
|
13. |
Mäkitie RE, Costantini A, Kämpe A, et al. New insights into monogenic causes of osteoporosis. Front Endocrinol (Lausanne), 2019, 10: 70. doi: 10.3389/fendo.2019.00070.
|
14. |
Li SS, He SH, Xie PY, et al. Recent progresses in the treatment of osteoporosis. Front Pharmacol, 2021, 12: 717065. doi: 10.3389/fphar.2021.717065.
|
15. |
Brent MB. Pharmaceutical treatment of bone loss: From animal models and drug development to future treatment strategies. Pharmacol Ther, 2023, 244: 108383. doi: 10.1016/j.pharmthera.2023.108383.
|
16. |
Saleh N, Nassef NA, Shawky MK, et al. Novel approach for pathogenesis of osteoporosis in ovariectomized rats as a model of postmenopausal osteoporosis. Exp Gerontol, 2020, 137: 110935. doi: 10.1016/j.exger.2020.110935.
|
17. |
Park S, Cui J, Yu W, et al. Differential activities and mechanisms of the four R-spondins in potentiating Wnt/β-catenin signaling. J Biol Chem, 2018, 293(25): 9759-9769.
|
18. |
Hein RFC, Wu JH, Holloway EM, et al. R-SPONDIN2(+) mesenchymal cells form the bud tip progenitor niche during human lung development. Dev Cell, 2022, 57: 1598-1614.
|
19. |
Yue Z, Niu X, Yuan Z, et al. RSPO2 and RANKL signal through LGR4 to regulate osteoclastic premetastatic niche formation and bone metastasis. J Clin Invest, 2022, 132(2): e144579. doi: 10.1172/JCI144579.
|
20. |
Ansari S, Ito K, Hofmann S. Alkaline phosphatase activity of serum affects osteogenic differentiation cultures. ACS Omega, 2022, 7(15): 12724-12733.
|
21. |
Rutkovskiy A, Stensløkken KO, Vaage IJ. Osteoblast differentiation at a glance. Med Sci Monit Basic Res, 2016, 22: 95-106.
|
22. |
Komori T. Whole aspect of Runx2 functions in skeletal development. Int J Mol Sci, 2022, 23(10): 5776. doi: 10.3390/ijms23105776.
|
23. |
Sanyal S, Rajput S, Sadhukhan S, et al. Polymorphisms in the Runx2 and osteocalcin genes affect BMD in postmenopausal women: a systematic review and meta-analysis. Endocrine, 2024, 84(1): 63-75.
|
24. |
Moriishi T, Komori T. Lack of reproducibility in osteocalcin-deficient mice. PLoS Genet, 2020, 16(6): e1008939. doi: 10.1371/journal.pgen.1008939.
|
25. |
Lin X, Patil S, Gao YG, et al. The bone extracellular matrix in bone formation and regeneration. Front Pharmacol, 2020, 11: 757. doi: 10.3389/fphar.2020.00757.
|