1. |
Tolentino ES, Souza Pinto GN, Maciel L, et al. Exuberant manifestation of neurofibromatosis type 1 affecting 3 generations: delayed diagnosis and the importance of the multidisciplinary approach. Oral Surg Oral Med Oral Pathol Oral Radiol, 2019, 128(3): e108-e112.
|
2. |
Legius E, Messiaen L, Wolkenstein P, et al. Revised diagnostic criteria for neurofibromatosis type 1 and Legius syndrome: an international consensus recommendation. Genet Med, 2021, 23(8): 1506-1513.
|
3. |
Lee TJ, Chopra M, Kim RH, et al. Incidence and prevalence of neurofibromatosis type 1 and 2: a systematic review and meta-analysis. Orphanet J Rare Dis, 2023, 18(1): 292. doi: 10.1186/s13023-023-02911-2.
|
4. |
Miller DT, Freedenberg D, Schorry E, et al. Health supervision for children with neurofibromatosis type 1. Pediatrics, 2019, 143(5): e20190660. doi: 10.1542/peds.2019-0660.
|
5. |
Mikhailova S, Kozlova V, Kazubskay T, et al. Malignant tumors in children with neurofibromatosis type 1. Problems in Oncology, 2021, 67(3): 421-429.
|
6. |
Costa AA, Gutmann DH. Brain tumors in neurofibromatosis type 1. Neurooncol Adv, 2019, 1(1): vdz040. doi: 10.1093/noajnl/vdz040.
|
7. |
中国罕见病联盟Ⅰ型神经纤维瘤病多学科诊疗协作组. Ⅰ型神经纤维瘤病多学科诊治指南 (2023版). 罕见病研究, 2023, 2(2): 210-230.
|
8. |
Campen CJ, Gutmann DH. Optic pathway gliomas in neurofibromatosis type 1. J Child Neurol, 2018, 33(1): 73-81.
|
9. |
Magro G, Broggi G, Angelico G, et al. Practical approach to histological diagnosis of peripheral nerve sheath tumors: An update. Diagnostics (Basel), 2022, 12(6): 1463. doi: 10.3390/diagnostics12061463.
|
10. |
Fisher MJ, Blakeley JO, Weiss BD, et al. Management of neurofibromatosis type 1-associated plexiform neurofibromas. Neuro Oncol, 2022, 24(11): 1827-1844.
|
11. |
Mohd Ramli SS, See GB, Zaki FM, et al. A rare tumor in the neck of a child: Plexiform neurofibroma. Turk Arch Otorhinolaryngol, 2021, 59(4): 297-301.
|
12. |
Friedrich RE, Modemann M. Neurofibromatosis type 1-associated plexiform neurofibromas of the face and adjacent head regions: Topography of lesions and surgical treatment data of 179 patients. J Maxillofac Oral Surg, 2023, 22(3): 511-524.
|
13. |
Avery RA, Katowitz JA, Fisher MJ, et al. Orbital/periorbital plexiform neurofibromas in children with neurofibromatosis type 1: Multidisciplinary recommendations for care. Ophthalmology, 2017, 124(1): 123-132.
|
14. |
Nguyen R, Dombi E, Akshintala S, et al. Characterization of spinal findings in children and adults with neurofibromatosis type 1 enrolled in a natural history study using magnetic resonance imaging. J Neurooncol, 2015, 121(1): 209-215.
|
15. |
Prudner BC, Ball T, Rathore R, et al. Diagnosis and management of malignant peripheral nerve sheath tumors: Current practice and future perspectives. Neurooncol Adv, 2019, 2(Suppl 1): i40-i49.
|
16. |
Gutmann DH, Ferner RE, Listernick RH, et al. Neurofibromatosis type 1. Nat Rev Dis Primers, 2017, 3: 17004. doi: 10.1038/nrdp.2017.4.
|
17. |
Rabab’h O, Gharaibeh A, Al-Ramadan A, et al. Pharmacological approaches in neurofibromatosis type 1-associated nervous system tumors. Cancers (Basel), 2021, 13(15): 3880. doi: 10.3390/cancers13153880.
|
18. |
Foiadelli T, Naso M, Licari A, et al. Advanced pharmacological therapies for neurofibromatosis type 1-related tumors. Acta Biomed, 2020, 91(7-S): 101-114.
|
19. |
Nellan A, Wright E, Campbell K, et al. Retrospective analysis of combination carboplatin and vinblastine for pediatric low-grade glioma. J Neurooncol, 2020, 148(3): 569-575.
|
20. |
Roux C, Revon-Rivière G, Gentet JC, et al. Metronomic maintenance with weekly vinblastine after induction with bevacizumab-irinotecan in children with low-grade glioma prevents early relapse. J Pediatr Hematol Oncol, 2021, 43(5): e630-e634.
|
21. |
Green K, Panagopoulou P, D’Arco F, et al. A nationwide evaluation of bevacizumab-based treatments in pediatric low-grade glioma in the UK: Safety, efficacy, visual morbidity, and outcomes. Neuro Oncol, 2023, 25(4): 774-785.
|
22. |
Klesse LJ, Jordan JT, Radtke HB, et al. The use of MEK inhibitors in neurofibromatosis type 1-associated tumors and management of toxicities. Oncologist, 2020, 25(7): e1109-e1116.
|
23. |
Packer RJ, Iavarone A, Jones DTW, et al. Implications of new understandings of gliomas in children and adults with NF1: report of a consensus conference. Neuro Oncol, 2020, 22(6): 773-784.
|
24. |
Kotch C, Brosius SN, De Raedt T, et al. Updates in the management of central and peripheral nervous system tumors among patients with neurofibromatosis type 1 and neurofibromatosis type 2. Pediatr Neurosurg, 2023, 58(5): 267-280.
|
25. |
Hirbe AC, Gutmann DH. Neurofibromatosis type 1: a multidisciplinary approach to care. Lancet Neurol, 2014, 13(8): 834-843.
|
26. |
Kinori M, Armarnik S, Listernick R, et al. Neurofibromatosis type 1-associated optic pathway glioma in children: a follow-up of 10 years or more. Am J Ophthalmol, 2021, 221: 91-96.
|
27. |
Picariello S, Cerbone M, D’Arco F, et al. A 40-year cohort study of evolving hypothalamic dysfunction in infants and young children (<3 years) with optic pathway gliomas. Cancers (Basel), 2022, 14(3): 747. doi: 10.3390/cancers14030747.
|
28. |
Bhatia S, Chen Y, Wong FL, et al. Subsequent neoplasms after a primary tumor in individuals with neurofibromatosis type 1. J Clin Oncol, 2019, 37(32): 3050-3058.
|
29. |
Ly KI, Blakeley JO. The diagnosis and management of neurofibromatosis type 1. Med Clin North Am, 2019, 103(6): 1035-1054.
|
30. |
任婷婷, 马建民. 视神经胶质瘤的临床诊疗及研究进展. 中华眼科杂志, 2023, 59(5): 415-419.
|
31. |
Glombova M, Petrak B, Lisy J, et al. Brain gliomas, hydrocephalus and idiopathic aqueduct stenosis in children with neurofibromatosis type 1. Brain Dev, 2019, 41(8): 678-690.
|
32. |
Mahdi J, Shah AC, Sato A, et al. A multi-institutional study of brainstem gliomas in children with neurofibromatosis type 1. Neurology, 2017, 88(16): 1584-1589.
|
33. |
Yoshinaga A, Tsuge I, Yoshinaga D, et al. Reduction of intraoperative bleeding in diffuse plexiform neurofibroma resection using the ligasure vessel sealing system. Plast Reconstr Surg, 2021, 148(2): 344e-346e.
|
34. |
朱倍瑶, 顾熠辉, 王薇, 等. 丛状神经纤维瘤的手术原则及策略. 中华整形外科杂志, 2023, 39(11): 1244-1250.
|
35. |
Gross AM, Dombi E, Wolters PL, et al. Long-term safety and efficacy of selumetinib in children with neurofibromatosis type 1 on a phase 1/2 trial for inoperable plexiform neurofibromas. Neuro Oncol, 2023, 25(10): 1883-1894.
|
36. |
Guo YX, Wang HX, Wang SS, et al. Treatment with selumetinib for Café-au-Lait macules and plexiform neurofibroma in pediatric patients with neurofibromatosis type 1. JAMA Dermatol, 2024, 160(3): 366-368.
|
37. |
Hwang J, Yoon HM, Lee BH, et al. Efficacy and safety of selumetinib in pediatric patients with neurofibromatosis type 1: a systematic review and meta-analysis. Neurology, 2022, 98(9): e938-e946.
|
38. |
Acar S, Armstrong AE, Hirbe AC. Plexiform neurofibroma: shedding light on the investigational agents in clinical trials. Expert Opin Investig Drugs, 2022, 31(1): 31-40.
|
39. |
Cui XW, Ren JY, Gu YH, et al. NF1, neurofibromin and gene therapy: prospects of next-generation therapy. Curr Gene Ther, 2020, 20(2): 100-108.
|
40. |
Champiat S, Tselikas L, Farhane S, et al. Intratumoral immunotherapy: from trial design to clinical practice. Clin Cancer Res, 2021, 27(3): 665-679.
|
41. |
von Mehren M, Kane JM, Agulnik M, et al. Soft tissue sarcoma, version 2. 2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw, 2022, 20(7): 815-833.
|
42. |
中国临床肿瘤学会指南工作委员会. 中国临床肿瘤学会(CSCO)软组织肉瘤诊疗指南. 北京: 人民卫生出版社, 2022.
|
43. |
Imura Y, Outani H, Takenaka S, et al. Clinical outcomes and prognostic factors for patients with malignant peripheral nerve sheath tumour. Sarcoma, 2021, 2021: 8335290. doi: 10.1155/2021/8335290.
|
44. |
Farid M, Demicco EG, Garcia R, et al. Malignant peripheral nerve sheath tumors. Oncologist, 2014, 19(2): 193-201.
|
45. |
Bates JE, Peterson CR, Dhakal S, et al. Malignant peripheral nerve sheath tumors (MPNST): a SEER analysis of incidence across the age spectrum and therapeutic interventions in the pediatric population. Pediatr Blood Cancer, 2014, 61(11): 1955-1960.
|
46. |
Higham CS, Steinberg SM, Dombi E, et al. SARC006: Phase Ⅱ trial of chemotherapy in sporadic and neurofibromatosis type 1 associated chemotherapy-naive malignant peripheral nerve sheath tumors. Sarcoma, 2017, 2017: 8685638. doi: 10.1155/2017/8685638.
|
47. |
Cimino PJ, Gutmann DH. Neurofibromatosis type 1. Handb Clin Neurol, 2018, 148: 799-811.
|
48. |
Nelson CN, Dombi E, Rosenblum JS, et al. Safe marginal resection of atypical neurofibromas in neurofibromatosis type 1. J Neurosurg, 2019, 133(5): 1516-1526.
|
49. |
Beert E, Brems H, Daniëls B, et al. Atypical neurofibromas in neurofibromatosis type 1 are premalignant tumors. Genes Chromosomes Cancer, 2011, 50(12): 1021-1032.
|
50. |
Kresbach C, Dottermusch M, Eckhardt A, et al. Atypical neurofibromas reveal distinct epigenetic features with proximity to benign peripheral nerve sheath tumor entities. Neuro Oncol, 2023, 25(9): 1644-1655.
|
51. |
Neifert SN, Khan HA, Kurland DB, et al. Management and surgical outcomes of dystrophic scoliosis in neurofibromatosis type 1: a systematic review. Neurosurg Focus, 2022, 52(5): E7. doi: 10.3171/2022.2.FOCUS21790.
|
52. |
Martin E, Pendleton C, Verhoef C, et al. Morbidity and function loss after resection of malignant peripheral nerve sheath tumors. Neurosurgery, 2022, 90(3): 354-364.
|
53. |
Merker VL, Bredella MA, Cai W, et al. Relationship between whole-body tumor burden, clinical phenotype, and quality of life in patients with neurofibromatosis. Am J Med Genet A, 2014, 164A(6): 1431-1437.
|
54. |
Badie B, Brooks N, Souweidane MM. Endoscopic and minimally invasive microsurgical approaches for treating brain tumor patients. J Neurooncol, 2004, 69(1-3): 209-219.
|
55. |
Rigante L, Borghei-Razavi H, Recinos PF, et al. An overview of endoscopy in neurologic surgery. Cleve Clin J Med, 2019, 86(10): 16ME-24ME.
|
56. |
De Simone M, Conti V, Palermo G, et al. Advancements in glioma care: Focus on emerging neurosurgical techniques. Biomedicines, 2023, 12(1): 8. doi: 10.3390/biomedicines12010008.
|
57. |
Fan Y, Xia Y, Zhang X, et al. Optical coherence tomography for precision brain imaging, neurosurgical guidance and minimally invasive theranostics. Biosci Trends, 2018, 12(1): 12-23.
|
58. |
Gerard IJ, Kersten-Oertel M, Hall JA, et al. Brain shift in neuronavigation of brain tumors: an updated review of intra-operative ultrasound applications. Front Oncol, 2021, 10: 618837. doi: 10.3389/fonc.2020.618837.
|
59. |
Schackert G, Juratli TA. Clinical and scientific advances in neurosurgery. Innov Surg Sci, 2021, 6(1): 1-2.
|
60. |
Sethuraman M, Bidkar PU, Mariappan R, et al. Recent advancements in the practice of neuroanaesthesia and neurocritical care: An update. Indian J Anaesth, 2023, 67(1): 85-90.
|
61. |
Choi S, Lee MH, Lee TK. Image-guided neurosurgery systems with microscope integration of intraoperative 3D-ultrasound in neuronavigation. The Nerve, 2021, 7(1): 27-30.
|
62. |
Nazzi V, Innocenti N, Castelli N, et al. Assessing the role of sodium fluorescein in peripheral nerve sheath tumors and mimicking lesions surgery: An update after 142 cases. Front Oncol, 2022, 12: 1070878. doi: 10.3389/fonc.2022.1070878.
|
63. |
Chaulagain D, Smolanka V, Smolanka A, et al. Advancements in surgical management of glioblastoma: current trends and promising future directions. International Neurological Journal, 2023, 19(5): 155-159.
|
64. |
Dastagirzada Y, Suryadevara C, Weiss H, et al. Neurosurgical advances for malignant gliomas: intersection of biology and technology. Cancer J, 2021, 27(5): 364-370.
|
65. |
Sampson JH, Gunn MD, Fecci PE, et al. Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer, 2020, 20(1): 12-25.
|
66. |
Liu T, Tai Y, Zhao C, et al. Augmented reality in neurosurgical navigation: a survey. Int J Med Robot, 2020. doi: 10.1002/rcs.2160.
|
67. |
Mofatteh M, Mashayekhi MS, Arfaie S, et al. Augmented and virtual reality usage in awake craniotomy: a systematic review. Neurosurg Rev, 2022, 46(1): 19. doi: 10.1007/s10143-022-01929-7.
|
68. |
Ragnhildstveit A, Li C, Zimmerman MH, et al. Intra-operative applications of augmented reality in glioma surgery: a systematic review. Front Surg, 2023, 10: 1245851. doi: 10.3389/fsurg.2023.1245851.
|
69. |
Chidambaram S, Stifano V, Demetres M, et al. Applications of augmented reality in the neurosurgical operating room: A systematic review of the literature. J Clin Neurosci, 2021, 91: 43-61.
|
70. |
Ogando-Rivas E, Castillo P, Beltran JQ, et al. Evolution and Revolution of Imaging Technologies in Neurosurgery. Neurol Med Chir (Tokyo), 2022, 62(12): 542-551.
|
71. |
Mazur T, Mansour TR, Mugge L, et al. Virtual reality-based simulators for cranial tumor surgery: a systematic review. World Neurosurg, 2018, 110: 414-422.
|
72. |
Kazemzadeh K, Akhlaghdoust M, Zali A. Advances in artificial intelligence, robotics, augmented and virtual reality in neurosurgery. Front Surg, 2023, 10: 1241923. doi: 10.3389/fsurg.2023.1241923.
|
73. |
Gosal JS, Tiwari S, Sharma T, et al. Simulation of surgery for supratentorial gliomas in virtual reality using a 3D volume rendering technique: a poor man’s neuronavigation. Neurosurg Focus, 2021, 51(2): E23. doi: 10.3171/2021.5.FOCUS21236.
|
74. |
Mishra R, Narayanan MDK, Umana GE, et al. Virtual reality in neurosurgery: beyond neurosurgical planning. Int J Environ Res Public Health, 2022, 19(3): 1719. doi: 10.3390/ijerph19031719.
|
75. |
Atteya MME. Innovations and new technologies in pediatric neurosurgery. Childs Nerv Syst, 2021, 37(5): 1471-1472.
|
76. |
Kundu M, Ng JC, Awuah WA, et al. NeuroVerse: neurosurgery in the era of Metaverse and other technological breakthroughs. Postgrad Med J, 2023, 99(1170): 240-243.
|
77. |
Tangsrivimol JA, Schonfeld E, Zhang M, et al. Artificial intelligence in neurosurgery: a state-of-the-art review from past to future. Diagnostics (Basel), 2023, 13(14): 2429. doi: 10.3390/diagnostics13142429.
|
78. |
Giannoni L, Marradi M, Marchetti M, et al. HyperProbe consortium: innovate tumour neurosurgery with innovative photonic solutions//Diffuse Optical Spectroscopy and Imaging Ⅸ. Munich: European Conference on Biomedical Optics, 2023.
|
79. |
Lin T, Xie Q, Peng T, et al. The role of robotic surgery in neurological cases: A systematic review on brain and spine applications. Heliyon, 2023, 9(12): e22523. doi: 10.1016/j.heliyon.2023.e22523.
|
80. |
Marcus HJ, Seneci CA, Payne CJ, et al. Robotics in keyhole transcranial endoscope-assisted microsurgery: a critical review of existing systems and proposed specifications for new robotic platforms. Neurosurgery, 2014, 10 Suppl 1: 84-96.
|
81. |
Nuzzi R, Brusasco L. State of the art of robotic surgery related to vision: brain and eye applications of newly available devices. Eye Brain, 2018, 10: 13-24.
|
82. |
Stumpo V, Staartjes VE, Klukowska AM, et al. Global adoption of robotic technology into neurosurgical practice and research. Neurosurg Rev, 2021, 44(5): 2675-2687.
|
83. |
Ball T, González-Martínez J, Zemmar A, et al. Robotic applications in cranial neurosurgery: current and future. Oper Neurosurg (Hagerstown), 2021, 21(6): 371-379.
|
84. |
Nizamis K, Athanasiou A, Almpani S, et al. Converging robotic technologies in targeted neural rehabilitation: a review of emerging solutions and challenges. Sensors (Basel), 2021, 21(6): 2084. doi: 10.3390/s21062084.
|