1. |
Dei Rossi G, Vergani LM, Buccino F. A novel triad of bio-inspired design, digital fabrication, and bio-derived materials for personalised bone repair. Materials (Basel), 2024, 17(21): 5305. doi: 10.3390/ma17215305.
|
2. |
Ge C, Chen F, Mao L, et al. Strontium ranelate-loaded POFC/β-TCP porous scaffolds for osteoporotic bone repair. RSC Adv, 2020, 10(15): 9016-9025.
|
3. |
Takase K, Niikura T, Fukui T, et al. Three-dimensional printed calcium phosphate scaffolds emulate bone microstructure to promote bone regrowth and repair. J Mater Sci Mater Med, 2024, 35(1): 53. doi: 10.1007/s10856-024-06817-8.
|
4. |
沈永帅, 刘欣春. 可降解材料在骨科临床中的应用. 中国材料进展, 2017, 36(3): 231-235.
|
5. |
Tovar N, Witek L, Atria P, et al. Form and functional repair of long bone using 3D-printed bioactive scaffolds. J Tissue Eng Regen Med, 2018, 12(9): 1986-1999.
|
6. |
Sun T, Feng Z, He W, et al. Novel 3D-printing bilayer GelMA-based hydrogel containing BP, β-TCP and exosomes for cartilage-bone integrated repair. Biofabrication, 2023, 16(1). doi: 10.1088/1758-5090/ad04fe.
|
7. |
Dang AT, Ono M, Wang Z, et al. Local E-rhBMP-2/β-TCP application rescues osteocyte dendritic integrity and reduces microstructural damage in alveolar bone post-extraction in MRONJ-like mouse model. Int J Mol Sci, 2024, 25(12): 6648. doi: 10.3390/ijms25126648.
|
8. |
单宇华, 陈振琦. β-磷酸三钙骨免疫学特性的研究进展. 口腔医学研究, 2021, 37(9): 787-790.
|
9. |
Clézardin P, Coleman R, Puppo M, et al. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev, 2021, 101(3): 797-855.
|
10. |
Miao Q, Yang X, Diao J, et al. 3D printed strontium-doped calcium phosphate ceramic scaffold enhances early angiogenesis and promotes bone repair through the regulation of macrophage polarization. Mater Today Bio, 2023, 23: 100871. doi: 10.1016/j.mtbio.2023.100871.
|
11. |
Trindade R, Albrektsson T, Tengvall P, et al. Foreign body reaction to biomaterials: On mechanisms for buildup and breakdown of osseointegration. Clin Implant Dent Relat Res, 2016, 18(1): 192-203.
|
12. |
Wu H, Chen C, Li J, et al. Engineered magneto-piezoelectric nanoparticles-enhanced scaffolds disrupt biofilms and activate oxidative phosphorylation in Icam1+ macrophages for infectious bone defect regeneration. ACS Nano, 2024, 18(52): 35575-35594.
|
13. |
Gou M, Wang H, Xie H, et al. Macrophages in guided bone regeneration: potential roles and future directions. Front Immunol, 2024, 15: 1396759. doi: 10.3389/fimmu.2024.1396759.
|
14. |
Li Y, Yao L, Zhang C, et al. Growth hormone-releasing peptide 2 may be associated with decreased M1 macrophage production and increased histologic and biomechanical tendon-bone healing properties in a rat rotator cuff tear model. Arthroscopy, 2024. doi: 10.1016/j.arthro.2024.11.094.
|
15. |
Kim DY, Ryu JH, Kim JH, et al. Targeting age-related impaired bone healing: ZnO nanoparticle-infused composite fibers modulate excessive NETosis and prolonged inflammation in aging. Int J Mol Sci, 2024, 25(23): 12851. doi: 10.3390/ijms252312851.
|
16. |
Xiong Y, Lin Z, Bu P, et al. A whole-course-repair system based on neurogenesis-angiogenesis crosstalk and macrophage reprogramming promotes diabetic wound healing. Adv Mater, 2023, 35(19): e2212300. doi: 10.1002/adma.202212300.
|
17. |
Li XR, Deng QS, He SH, et al. 3D cryo-printed hierarchical porous scaffolds provide immobilization of surface-functionalized sleep-inspired small extracellular vesicles: synergistic therapeutic strategies for vascularized bone regeneration based on macrophage phenotype modulation and angiogenesis-osteogenesis coupling. J Nanobiotechnology, 2024, 22(1): 764. doi: 10.1186/s12951-024-02977-5.
|
18. |
You J, Zhang Y, Zhou Y. Strontium functionalized in biomaterials for bone tissue engineering: A prominent role in osteoimmunomodulation. Front Bioeng Biotechnol, 2022, 10: 928799. doi: 10.3389/fbioe.2022.928799.
|
19. |
Miao Q, Jiang N, Yang Q, et al. Multi-stage controllable degradation of strontium-doped calcium sulfate hemihydrate-tricalcium phosphate microsphere composite as a substitute for osteoporotic bone defect repairing: degradation behavior and bone response. Biomed Mater, 2021, 17(1). doi: 10.1088/1748-605X/ac4323.
|
20. |
He F, Lu T, Fang X, et al. Study on MgxSr3-x(PO4)2 bioceramics as potential bone grafts. Colloids Surf B Biointerfaces, 2019, 175: 158-165.
|
21. |
Safarova Yantsen Y, Nessipbekova A, Syzdykova A, et al. Strontium- and copper-doped ceramic granules in bone regeneration-associated cellular processes. J Funct Biomater, 2024, 15(11): 352. doi: 10.3390/jfb15110352.
|
22. |
Deng L, Huang L, Pan H, et al. 3D printed strontium-zinc-phosphate bioceramic scaffolds with multiple biological functions for bone tissue regeneration. J Mater Chem B, 2023, 11(24): 5469-5482.
|
23. |
Tian Y, Lu T, He F, et al. β-tricalcium phosphate composite ceramics with high compressive strength, enhanced osteogenesis and inhibited osteoclastic activities. Colloids Surf B Biointerfaces, 2018, 167: 318-327.
|
24. |
Goodarzi H, Hashemi-Najafabadi S, Baheiraei N, et al. Preparation and characterization of nanocomposite scaffolds (collagen/β-TCP/SrO) for bone tissue engineering. Tissue Eng Regen Med, 2019, 16(3): 237-251.
|
25. |
Tarafder S, Dernell WS, Bandyopadhyay A, et al. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model. J Biomed Mater Res B Appl Biomater, 2015, 103(3): 679-690.
|
26. |
Asensio G, Benito-Garzón L, Ramírez-Jiménez RA, et al. Biomimetic gradient scaffolds containing hyaluronic acid and Sr/Zn folates for osteochondral tissue engineering. Polymers (Basel), 2021, 14(1): 12. doi: 10.3390/polym14010012.
|
27. |
Bootchanont A, Chaosuan N, Promdee S, et al. Correlation between biomedical and structural properties of Zn/Sr modified calcium phosphates. Biometals, 2024, 37(5): 1177-1189.
|
28. |
Chen F, Tian L, Pu X, et al. Enhanced ectopic bone formation by strontium-substituted calcium phosphate ceramics through regulation of osteoclastogenesis and osteoblastogenesis. Biomater Sci, 2022, 10(20): 5925-5937.
|
29. |
Sugimoto H, Inagaki Y, Furukawa A, et al. Silicate/zinc-substituted strontium apatite coating improves the osteoinductive properties of β-tricalcium phosphate bone graft substitute. BMC Musculoskelet Disord, 2021, 22(1): 673. doi: 10.1186/s12891-021-04563-4.
|
30. |
Pang B, Xian J, Chen J, et al. Cuttlefish bone-derived calcium phosphate bioceramics have enhanced osteogenic properties. J Funct Biomater, 2024, 15(8): 212. doi: 10.3390/jfb15080212.
|
31. |
Basu S, Ghosh A, Barui A, et al. Epithelial cell functionality on electroconductive Fe/Sr co-doped biphasic calcium phosphate. J Biomater Appl, 2019, 33(8): 1035-1052.
|
32. |
Huang B, Li S, Dai S, et al. Ti3C2Tx MXene-decorated 3D-printed ceramic scaffolds for Enhancing osteogenesis by spatiotemporally orchestrating inflammatory and bone repair responses. Adv Sci (Weinh), 2024, 11(34): e2400229. doi: 10.1002/advs.202400229.
|
33. |
Singh SS, Roy A, Lee B, et al. Study of hMSC proliferation and differentiation on Mg and Mg-Sr containing biphasic β-tricalcium phosphate and amorphous calcium phosphate ceramics. Mater Sci Eng C Mater Biol Appl, 2016, 64: 219-228.
|
34. |
Arbez B, Manero F, Mabilleau G, et al. Human macrophages and osteoclasts resorb β-tricalcium phosphate in vitro but not mouse macrophages. Micron, 2019, 125: 102730. doi: 10.1016/j.micron.2019.102730.
|
35. |
Chazono M, Tanaka T, Kitasato S, et al. Electron microscopic study on bone formation and bioresorption after implantation of beta-tricalcium phosphate in rabbit models. J Orthop Sci, 2008, 13(6): 550-555.
|
36. |
Che J, Sun T, Lv X, et al. Influence of Ag and/or Sr dopants on the mechanical properties and in vitro degradation of β-tricalcium phosphate-based ceramics. materials (basel). 2023, 16(17): 6025. doi: 10.3390/ma16176025.
|
37. |
Bohner M, Santoni BLG, Döbelin N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater, 2020, 113: 23-41.
|
38. |
Naruphontjirakul P, Li S, Pinna A, et al. Interaction of monodispersed strontium containing bioactive glass nanoparticles with macrophages. Biomater Adv, 2022, 133: 112610. doi: 10.1016/j.msec.2021.112610.
|
39. |
Yu D, Guo S, Yu M, et al. Immunomodulation and osseointegration activities of Na2TiO3 nanorods-arrayed coatings doped with different Sr content. Bioact Mater, 2021, 10: 323-334.
|
40. |
Jiang S, Wang X, Ma Y, et al. Synergistic effect of micro-nano-hybrid surfaces and Sr doping on the osteogenic and angiogenic capacity of hydroxyapatite bioceramics scaffolds. Int J Nanomedicine, 2022, 17: 783-797.
|
41. |
Miao A, Li Q, Tang G, et al. Alginate-containing 3D-printed hydrogel scaffolds incorporated with strontium promotes vascularization and bone regeneration. Int J Biol Macromol, 2024, 273(Pt 1): 133038. doi: 10.1016/j.ijbiomac.2024.133038.
|
42. |
Li S, Zhang L, Liu C, et al. Spontaneous immunomodulation and regulation of angiogenesis and osteogenesis by Sr/Cu-borosilicate glass (BSG) bone cement to repair critical bone defects. Bioact Mater, 2022, 23: 101-117.
|
43. |
Sha W, Zhao B, Wei H, et al. Astragalus polysaccharide ameliorates vascular endothelial dysfunction by stimulating macrophage M2 polarization via potentiating Nrf2/HO-1 signaling pathway. Phytomedicine, 2023, 112: 154667. doi: 10.1016/j.phymed.2023.154667.
|
44. |
Jomova K, Raptova R, Alomar SY, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol, 2023, 97(10): 2499-2574.
|
45. |
Zhou C, Chen YQ, Zhu YH, et al. Antiadipogenesis and osseointegration of strontium-doped implant surfaces. J Dent Res, 2019, 98(7): 795-802.
|
46. |
Li Y, Chen M, Yan J, et al. Tannic acid/Sr2+-coated silk/graphene oxide-based meniscus scaffold with anti-inflammatory and anti-ROS functions for cartilage protection and delaying osteoarthritis. Acta Biomater, 2021, 126: 119-131.
|
47. |
Asensio G, Martín-Del-Campo M, Ramírez RA, et al. New insights into the in vitro antioxidant routes and osteogenic properties of Sr/Zn phytate compounds. Pharmaceutics, 2023, 15(2): 339. doi: 10.3390/pharmaceutics15020339.
|
48. |
Wu X, Tang Z, Wu K, et al. Strontium-calcium phosphate hybrid cement with enhanced osteogenic and angiogenic properties for vascularised bone regeneration. J Mater Chem B, 2021, 9(30): 5982-5997.
|